Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,003)

Search Parameters:
Keywords = quantum computing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 384 KiB  
Article
Paving the Way for SQIsign: Toward Efficient Deployment on 32-bit Embedded Devices
by Yue Hu, Shiyu Shen, Hao Yang and Weize Wang
Mathematics 2024, 12(19), 3147; https://doi.org/10.3390/math12193147 - 8 Oct 2024
Viewed by 242
Abstract
The threat of quantum computing has spurred research into post-quantum cryptography. SQIsign, a candidate submitted to the standardization process of the National Institute of Standards and Technology, is emerging as a promising isogeny-based signature scheme. This work aimed to enhance SQI [...] Read more.
The threat of quantum computing has spurred research into post-quantum cryptography. SQIsign, a candidate submitted to the standardization process of the National Institute of Standards and Technology, is emerging as a promising isogeny-based signature scheme. This work aimed to enhance SQIsign’s practical deployment by optimizing its low-level arithmetic operations. Through hierarchical decomposition and performance profiling, we identified the ideal-to-isogeny translation, primarily involving elliptic curve operations, as the main bottleneck. We developed efficient 32-bit finite field arithmetic for elliptic curves, such as basic operations, like addition with carry, subtraction with borrow, and conditional move. We then implemented arithmetic operations in the Montgomery domain, and extended these to quadratic field extensions. Our implementation offers improved compatibility with 32-bit architectures and enables more fine-grained SIMD acceleration. Performance evaluations demonstrated the practicality in low-level operations. Our work has potential in easing the development of SQIsign in practice, making SQIsign more efficient and practical for real-world post-quantum cryptographic applications. Full article
(This article belongs to the Special Issue New Advances in Cryptographic Theory and Application)
Show Figures

Figure 1

16 pages, 3583 KiB  
Article
BHT-QAOA: The Generalization of Quantum Approximate Optimization Algorithm to Solve Arbitrary Boolean Problems as Hamiltonians
by Ali Al-Bayaty and Marek Perkowski
Entropy 2024, 26(10), 843; https://doi.org/10.3390/e26100843 - 6 Oct 2024
Viewed by 324
Abstract
A new methodology is introduced to solve classical Boolean problems as Hamiltonians, using the quantum approximate optimization algorithm (QAOA). This methodology is termed the “Boolean-Hamiltonians Transform for QAOA” (BHT-QAOA). Because a great deal of research and studies are mainly focused on solving combinatorial [...] Read more.
A new methodology is introduced to solve classical Boolean problems as Hamiltonians, using the quantum approximate optimization algorithm (QAOA). This methodology is termed the “Boolean-Hamiltonians Transform for QAOA” (BHT-QAOA). Because a great deal of research and studies are mainly focused on solving combinatorial optimization problems using QAOA, the BHT-QAOA adds an additional capability to QAOA to find all optimized approximated solutions for Boolean problems, by transforming such problems from Boolean oracles (in different structures) into Phase oracles, and then into the Hamiltonians of QAOA. From such a transformation, we noticed that the total utilized numbers of qubits and quantum gates are dramatically minimized for the generated Hamiltonians of QAOA. In this article, arbitrary Boolean problems are examined by successfully solving them with our BHT-QAOA, using different structures based on various logic synthesis methods, an IBM quantum computer, and a classical optimization minimizer. Accordingly, the BHT-QAOA will provide broad opportunities to solve many classical Boolean-based problems as Hamiltonians, for the practical engineering applications of several algorithms, digital synthesizers, robotics, and machine learning, just to name a few, in the hybrid classical-quantum domain. Full article
(This article belongs to the Special Issue The Future of Quantum Machine Learning and Quantum AI)
Show Figures

Figure 1

25 pages, 649 KiB  
Article
Provably Quantum Secure Three-Party Mutual Authentication and Key Exchange Protocol Based on Modular Learning with Error
by Hyewon Park, Seunghwan Son, Youngho Park and Yohan Park
Electronics 2024, 13(19), 3930; https://doi.org/10.3390/electronics13193930 - 4 Oct 2024
Viewed by 298
Abstract
With the rapid development of quantum computers, post-quantum cryptography (PQC) has become critical technology in the security field. PQC includes cryptographic techniques that are secure against quantum-computer-based attacks, utilizing methods such as code-based, isogeny-based, and lattice-based approaches. Among these, lattice-based cryptography is the [...] Read more.
With the rapid development of quantum computers, post-quantum cryptography (PQC) has become critical technology in the security field. PQC includes cryptographic techniques that are secure against quantum-computer-based attacks, utilizing methods such as code-based, isogeny-based, and lattice-based approaches. Among these, lattice-based cryptography is the most extensively studied due to its ease of implementation and efficiency. As quantum computing advances, the need for secure communication protocols that can withstand quantum computer-based threats becomes increasingly important. Traditional two-party AKE protocols have a significant limitation: the security of the entire system can be compromised if either of the communicating parties behaves maliciously. To overcome this limitation, researchers have proposed three-party AKE protocols, where a third party acts as an arbiter or verifier. However, we found that a recently proposed three-party AKE protocol is vulnerable to quantum-computer-based attacks. To address this issue, we propose a provably quantum secure three-party AKE protocol based on MLWE. The proposed scheme leverages the user’s biometric information and the server’s master key to prevent the exposure of critical parameters. We analyzed the security of the protocol using simulation tools such as the Burrows–Abadi–Needham (BAN) logic, Real-or-Random (RoR) model, and Automated Validation of Internet Security Protocols and Applications (AVISPA). Furthermore, comparative analysis with similar protocols demonstrates that our protocol is efficient and suitable. Full article
Show Figures

Figure 1

29 pages, 967 KiB  
Article
Schwinger–Keldysh Path Integral Formalism for a Quenched Quantum Inverted Oscillator
by Sayantan Choudhury, Suman Dey, Rakshit Mandish Gharat, Saptarshi Mandal and Nilesh Pandey
Symmetry 2024, 16(10), 1308; https://doi.org/10.3390/sym16101308 - 3 Oct 2024
Viewed by 595
Abstract
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for [...] Read more.
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method to obtain its eigenstate and continuous energy eigenvalues. Using the expression for the eigenstate, we further derive the most general expression for the generating function as well as the out-of-time-ordered correlators (OTOCs) for the given system using this formalism. Further, considering the time-dependent coupling and frequency of the quantum inverted oscillator characterized by quench parameters, we comment on the dynamical behavior, specifically the early, intermediate and late time-dependent features of the OTOC for the quenched quantum inverted oscillator. Next, we study a specific case, where the system of an inverted oscillator exhibits chaotic behavior by computing the quantum Lyapunov exponent from the time-dependent behavior of OTOCs in the presence of the given quench profile. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2024)
Show Figures

Figure 1

13 pages, 3558 KiB  
Article
Multi-Layer QCA Reversible Full Adder-Subtractor Using Reversible Gates for Reliable Information Transfer and Minimal Power Dissipation on Universal Quantum Computer
by Jun-Cheol Jeon
Appl. Sci. 2024, 14(19), 8886; https://doi.org/10.3390/app14198886 - 2 Oct 2024
Viewed by 360
Abstract
The effects of quantum mechanics dominate nanoscale devices, where Moore’s law no longer holds true. Additionally, with the recent rapid development of quantum computers, the development of reversible gates to overcome the problems of energy and information loss and the nano-level quantum-dot cellular [...] Read more.
The effects of quantum mechanics dominate nanoscale devices, where Moore’s law no longer holds true. Additionally, with the recent rapid development of quantum computers, the development of reversible gates to overcome the problems of energy and information loss and the nano-level quantum-dot cellular automata (QCA) technology to efficiently implement them are in the spotlight. In this study, a full adder-subtractor, a core operation of the arithmetic and logic unit (ALU), the most important hardware device in computer operations, is implemented as a circuit capable of reversible operation using QCA-based reversible gates. The proposed circuit consists of one reversible QCA gate and two Feynman gates and is designed as a multi-layer structure for efficient use of area and minimization of delay. The proposed circuit is tested on QCADesigner 2.0.3 and QCADesigner-E 2.2 and shows the best performance and lowest energy dissipation. In particular, it shows tremendous improvement rates of 180% and 562% in two representative standard design cost indicators compared to the best existing studies, and also shows the highest circuit average output polarization. Full article
Show Figures

Figure 1

8 pages, 2033 KiB  
Article
Synergic Effect of N and Se Facilitates Photoelectric Performance in Co-Hyperdoped Silicon
by Haibin Sun, Xiaolong Liu, Caixia Xu, Long Xu, Yuwei Chen, Haima Yang, Xing Yang, Peng Rao, Shengli Sun and Li Zhao
Nanomaterials 2024, 14(19), 1591; https://doi.org/10.3390/nano14191591 - 2 Oct 2024
Viewed by 411
Abstract
Femtosecond-laser-fabricated black silicon has been widely used in the fields of solar cells, photodetectors, semiconductor devices, optical coatings, and quantum computing. However, the responsive spectral range limits its application in the near- to mid-infrared wavelengths. To further increase the optical responsivity in longer [...] Read more.
Femtosecond-laser-fabricated black silicon has been widely used in the fields of solar cells, photodetectors, semiconductor devices, optical coatings, and quantum computing. However, the responsive spectral range limits its application in the near- to mid-infrared wavelengths. To further increase the optical responsivity in longer wavelengths, in this work, silicon (Si) was co-hyperdoped with nitrogen (N) and selenium (Se) through the deposition of Se films on Si followed by femtosecond (fs)-laser irradiation in an atmosphere of NF3. The optical and crystalline properties of the Si:N/Se were found to be influenced by the precursor Se film and laser fluence. The resulting photodetector, a product of this innovative approach, exhibited an impressive responsivity of 24.8 A/W at 840 nm and 19.8 A/W at 1060 nm, surpassing photodetectors made from Si:N, Si:S, and Si:S/Se (the latter two fabricated in SF6). These findings underscore the co-hyperdoping method’s potential in significantly improving optoelectronic device performance. Full article
Show Figures

Figure 1

19 pages, 5469 KiB  
Article
Privately Generated Key Pairs for Post Quantum Cryptography in a Distributed Network
by Mahafujul Alam, Jeffrey Hoffstein and Bertrand Cambou
Appl. Sci. 2024, 14(19), 8863; https://doi.org/10.3390/app14198863 - 2 Oct 2024
Viewed by 299
Abstract
In the proposed protocol, a trusted entity interacts with the terminal device of each user to verify the legitimacy of the public keys without having access to the private keys that are generated and kept totally secret by the user. The protocol introduces [...] Read more.
In the proposed protocol, a trusted entity interacts with the terminal device of each user to verify the legitimacy of the public keys without having access to the private keys that are generated and kept totally secret by the user. The protocol introduces challenge–response–pair mechanisms enabling the generation, distribution, and verification of cryptographic public–private key pairs in a distributed network with multi-factor authentication, tokens, and template-less biometry. While protocols using generic digital signature algorithms are proposed, the focus of the experimental work was to implement a solution based on Crystals-Dilithium, a post-quantum cryptographic algorithm under standardization. Crystals-Dilithium generates public keys consisting of two interrelated parts, a matrix generating seed, and a vector computed from the matrix and two randomly picked vectors forming the secret key. We show how such a split of the public keys lends itself to a two-way authentication of both the trusted entity and the users. Full article
(This article belongs to the Special Issue Recent Progress of Information Security and Cryptography)
Show Figures

Figure 1

16 pages, 1401 KiB  
Article
Quelling the Geometry Factor Effect in Quantum Chemical Calculations of 13C NMR Chemical Shifts with the Aid of the pecG-n (n = 1, 2) Basis Sets
by Yuriy Yu. Rusakov, Valentin A. Semenov and Irina L. Rusakova
Int. J. Mol. Sci. 2024, 25(19), 10588; https://doi.org/10.3390/ijms251910588 - 1 Oct 2024
Viewed by 303
Abstract
A root factor for the accuracy of all quantum chemical calculations of nuclear magnetic resonance (NMR) chemical shifts is the quality of the molecular equilibrium geometry used. In turn, this quality depends largely on the basis set employed at the geometry optimization stage. [...] Read more.
A root factor for the accuracy of all quantum chemical calculations of nuclear magnetic resonance (NMR) chemical shifts is the quality of the molecular equilibrium geometry used. In turn, this quality depends largely on the basis set employed at the geometry optimization stage. This parameter represents the main subject of the present study, which is a continuation of our recent work, where new pecG-n (n = 1, 2) basis sets for the geometry optimization were introduced. A goal of this study was to compare the performance of our geometry-oriented pecG-n (n = 1, 2) basis sets against the other basis sets in massive calculations of 13C NMR shielding constants/chemical shifts in terms of their efficacy in reducing geometry factor errors. The testing was carried out with both large-sized biologically active natural products and medium-sized compounds with complicated electronic structures. The former were treated using the computation protocol based on the density functional theory (DFT) and considered in the theoretical benchmarking, while the latter were treated using the computational scheme based on the upper-hierarchy coupled cluster (CC) methods and were used in the practical benchmarking involving the comparison with experimental NMR data. Both the theoretical and practical analyses showed that the pecG-1 and pecG-2 basis sets resulted in substantially reduced geometry factor errors in the calculated 13C NMR chemical shifts/shielding constants compared to their commensurate analogs, with the pecG-2 basis set being the best of all the considered basis sets. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

58 pages, 52497 KiB  
Article
Hybrid-Blockchain-Based Electronic Voting Machine System Embedded with Deepface, Sharding, and Post-Quantum Techniques
by Sohel Ahmed Joni, Rabiul Rahat, Nishat Tasnin, Partho Ghose, Md. Ashraf Uddin and John Ayoade
Blockchains 2024, 2(4), 366-423; https://doi.org/10.3390/blockchains2040017 - 30 Sep 2024
Viewed by 355
Abstract
The integrity of democratic processes relies on secure and reliable election systems, yet achieving this reliability is challenging. This paper introduces the Post-Quantum Secured Multiparty Computed Hierarchical Authoritative Consensus Blockchain (PQMPCHAC-Bchain), a novel e-voting system designed to overcome the limitations of current Biometric [...] Read more.
The integrity of democratic processes relies on secure and reliable election systems, yet achieving this reliability is challenging. This paper introduces the Post-Quantum Secured Multiparty Computed Hierarchical Authoritative Consensus Blockchain (PQMPCHAC-Bchain), a novel e-voting system designed to overcome the limitations of current Biometric Electronic Voting Machine (EVM) systems, which suffer from trust issues due to closed-source designs, cyber vulnerabilities, and regulatory concerns. Our primary objective is to develop a robust, scalable, and secure e-voting framework that enhances transparency and trust in electoral outcomes. Key contributions include integrating hierarchical authorization and access control with a novel consensus mechanism for proper electoral governance. We implement blockchain sharding techniques to improve scalability and propose a multiparty computed token generation system to prevent fraudulent voting and secure voter privacy. Post-quantum cryptography is incorporated to safeguard against potential quantum computing threats, future-proofing the system. Additionally, we enhance authentication through a deep learning-based face verification model for biometric validation. Our performance analysis indicates that the PQMPCHAC-Bchain e-voting system offers a promising solution for secure elections. By addressing critical aspects of security, scalability, and trust, our proposed system aims to advance the field of electronic voting. This research contributes to ongoing efforts to strengthen the integrity of democratic processes through technological innovation. Full article
(This article belongs to the Special Issue Feature Papers in Blockchains)
Show Figures

Figure 1

13 pages, 304 KiB  
Article
Quantum-Enhanced Generalized Pattern Search Optimization
by Colton Mikes, David Huckleberry Gutman and Victoria E. Howle
Quantum Rep. 2024, 6(4), 509-521; https://doi.org/10.3390/quantum6040034 - 29 Sep 2024
Viewed by 250
Abstract
While the development of quantum computers promises a myriad of advantages over their classical counterparts, care must be taken when designing algorithms that substitute a classical technique with a potentially advantageous quantum method. The probabilistic nature of many quantum algorithms may result in [...] Read more.
While the development of quantum computers promises a myriad of advantages over their classical counterparts, care must be taken when designing algorithms that substitute a classical technique with a potentially advantageous quantum method. The probabilistic nature of many quantum algorithms may result in new behavior that could negatively impact the performance of the larger algorithm. The purpose of this work is to preserve the advantages of applying quantum search methods for generalized pattern search algorithms (GPSs) without violating the convergence criteria. It is well known that quantum search methods are able to reduce the expected number of oracle calls needed for finding the solution to a search problem from O(N) to O(N) However, the number of oracle calls needed to determine that no solution exists with certainty is exceedingly high and potentially infinite. In the case of GPS, this is a significant problem since overlooking a solution during an iteration will violate a needed assumption for convergence. Here, we overcome this problem by introducing the quantum improved point search (QIPS), a classical–quantum hybrid variant of the quantum search algorithm QSearch. QIPS retains the O(N) oracle query complexity of QSearch when a solution exists. However, it is able to determine when no solution exists, with certainty, using only O(N) oracle calls. Full article
22 pages, 579 KiB  
Article
Towards the Construction of an Analog Solver for the Schrödinger and Ginzburg–Landau Equations Based on a Transmission Line
by Krzysztof Pomorski, Łukasz Pluszyński and Eryk Hałubek
Condens. Matter 2024, 9(4), 35; https://doi.org/10.3390/condmat9040035 - 26 Sep 2024
Viewed by 375
Abstract
The model presented by Gabriel Kron in 1945 is an example of an analog computer simulating quantum phenomena on a hardware level. It uses passive RLC elements to construct a hardware solver for the problem of quantum particles confined by rectangular or other [...] Read more.
The model presented by Gabriel Kron in 1945 is an example of an analog computer simulating quantum phenomena on a hardware level. It uses passive RLC elements to construct a hardware solver for the problem of quantum particles confined by rectangular or other classes of potential. The analytical and numerical validation of Kron’s second model is conducted for different shapes of particle-confining potentials in the one-dimensional case using an LTspice simulator. Thus, there remains potential for obtaining solutions in two- and three-dimensional cases. Here, a circuit model representing a linearized Ginzburg–Landau equation is given. Kron’s second model is generalized by the introduction of linear and non-linear resistive elements. This transforms the deformed Schrödinger equation into a linear dissipative Schrödinger equation and its non-linear form. The quantum mechanical roton problem is the main result of this work and is formulated by means of classical physical states naturally present in the LC classical circular electrical transmission line. The experimental verification of Kron’s model is confirmed. Full article
Show Figures

Figure 1

18 pages, 764 KiB  
Tutorial
A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems
by Lorenzo Brevi, Antonio Mandarino and Enrico Prati
Technologies 2024, 12(10), 174; https://doi.org/10.3390/technologies12100174 - 26 Sep 2024
Viewed by 619
Abstract
Quantum many-body systems are of great interest for many research areas, including physics, biology, and chemistry. However, their simulation is extremely challenging, due to the exponential growth of the Hilbert space with system size, making it exceedingly difficult to parameterize the wave functions [...] Read more.
Quantum many-body systems are of great interest for many research areas, including physics, biology, and chemistry. However, their simulation is extremely challenging, due to the exponential growth of the Hilbert space with system size, making it exceedingly difficult to parameterize the wave functions of large systems by using exact methods. Neural networks and machine learning, in general, are a way to face this challenge. For instance, methods like tensor networks and neural quantum states are being investigated as promising tools to obtain the wave function of a quantum mechanical system. In this tutorial, we focus on a particularly promising class of deep learning algorithms. We explain how to construct a Physics-Informed Neural Network (PINN) able to solve the Schrödinger equation for a given potential, by finding its eigenvalues and eigenfunctions. This technique is unsupervised, and utilizes a novel computational method in a manner that is barely explored. PINNs are a deep learning method that exploit automatic differentiation to solve integro-differential equations in a mesh-free way. We show how to find both the ground and the excited states. The method discovers the states progressively by starting from the ground state. We explain how to introduce inductive biases in the loss to exploit further knowledge of the physical system. Such additional constraints allow for a faster and more accurate convergence. This technique can then be enhanced by a smart choice of collocation points in order to take advantage of the mesh-free nature of the PINN. The methods are made explicit by applying them to the infinite potential well and the particle in a ring, a challenging problem to be learned by an artificial intelligence agent due to the presence of complex-valued eigenfunctions and degenerate states Full article
(This article belongs to the Section Quantum Technologies)
Show Figures

Figure 1

30 pages, 5446 KiB  
Article
On the Exploration of Quantum Polar Stabilizer Codes and Quantum Stabilizer Codes with High Coding Rate
by Zhengzhong Yi, Zhipeng Liang, Yulin Wu and Xuan Wang
Entropy 2024, 26(10), 818; https://doi.org/10.3390/e26100818 - 25 Sep 2024
Viewed by 411
Abstract
Inspired by classical polar codes, whose coding rate can asymptotically achieve the Shannon capacity, researchers are trying to find their analogs in the quantum information field, which are called quantum polar codes. However, no one has designed a quantum polar coding scheme that [...] Read more.
Inspired by classical polar codes, whose coding rate can asymptotically achieve the Shannon capacity, researchers are trying to find their analogs in the quantum information field, which are called quantum polar codes. However, no one has designed a quantum polar coding scheme that applies to quantum computing yet. There are two intuitions in previous research. The first is that directly converting classical polar coding circuits to quantum ones will produce the polarization phenomenon of a pure quantum channel, which has been proved in our previous work. The second is that based on this quantum polarization phenomenon, one can design a quantum polar coding scheme that applies to quantum computing. There are several previous work following the second intuition, none of which has been verified by experiments. In this paper, we follow the second intuition and propose a more reasonable quantum polar stabilizer code construction algorithm than any previous ones by using the theory of stabilizer codes. Unfortunately, simulation experiments show that even the stabilizer codes obtained from this more reasonable construction algorithm do not work, which implies that the second intuition leads to a dead end. Based on the analysis of why the second intuition does not work, we provide a possible future direction for designing quantum stabilizer codes with a high coding rate by borrowing the idea of classical polar codes. Following this direction, we find a class of quantum stabilizer codes with a coding rate of 0.5, which can correct two of the Pauli errors. Full article
(This article belongs to the Special Issue Quantum Computing in the NISQ Era)
Show Figures

Figure 1

12 pages, 648 KiB  
Article
Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination
by Kyungbae Jang, Yujin Oh and Hwajeong Seo
Appl. Sci. 2024, 14(19), 8579; https://doi.org/10.3390/app14198579 - 24 Sep 2024
Viewed by 276
Abstract
Quantum computers have the capacity to solve certain complex problems more efficiently than classical computers. To fully leverage these quantum advantages, adapting classical arithmetic for quantum systems in a circuit level is essential. In this paper, we introduce a depth-optimized quantum circuit of [...] Read more.
Quantum computers have the capacity to solve certain complex problems more efficiently than classical computers. To fully leverage these quantum advantages, adapting classical arithmetic for quantum systems in a circuit level is essential. In this paper, we introduce a depth-optimized quantum circuit of Gauss–Jordan elimination for matrices in binary. This quantum circuit is a crucial module for accelerating Information Set Decoding (ISD) using Grover’s algorithm. ISD is a cryptographic technique used in analyzing code-based cryptographic algorithms. When combined with Grover’s search, it achieves a square root reduction in complexity. The proposed method emphasizes the potential for parallelization in the quantum circuit implementation of Gauss–Jordan elimination. We allocate additional ancilla qubits to enable parallel operations within the target matrix and further reuse these ancilla qubits to minimize overhead from our additional allocation. The proposed quantum circuit for Gauss–Jordan elimination achieves the lowest Toffoli depth compared to the-state-of-art previous works. Full article
Show Figures

Figure 1

20 pages, 657 KiB  
Article
General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer
by Agostino Migliore, Hiromichi Nakazato, Alessandro Sergi and Antonino Messina
Physics 2024, 6(3), 1171-1190; https://doi.org/10.3390/physics6030072 - 23 Sep 2024
Viewed by 398
Abstract
Two-level quantum systems are building blocks of quantum technologies, where the qubit is the basic unit of quantum information. The ability to design driving fields that produce prespecified evolutions of relevant physical observables is crucial to the development of such technologies. Using vector [...] Read more.
Two-level quantum systems are building blocks of quantum technologies, where the qubit is the basic unit of quantum information. The ability to design driving fields that produce prespecified evolutions of relevant physical observables is crucial to the development of such technologies. Using vector algebra and recently developed strategies for generating solvable two-level Hamiltonians, we construct the general solution to the inverse problem for a spin in a time-dependent magnetic field and its extension to any two-level system associated with fictitious spin and field. We provide a general expression for the field that drives the dynamics of the system so as to realize prescribed time evolutions of the expectation values of the Pauli operators and the autocorrelation of the Pauli vector. The analysis is applied to two-state charge transfer systems, showing that the charge transfer process can be seen as a motion of the state of the associated fictitious qubit on the Bloch sphere, and that the expectation values of the related Pauli operators describe the interference between the two differently localized electronic states and their population difference. Our formulation is proposed as a basic step towards potential uses of charge transfer in quantum computing and quantum information transfer. Full article
Show Figures

Figure 1

Back to TopTop