Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,322)

Search Parameters:
Keywords = smart material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3449 KiB  
Article
Facile Incorporation of Carbon Nanotubes into the Concrete Matrix Using Lignosulfonate Surfactants
by Aleksandra Kostrzanowska-Siedlarz, Krzysztof Musioł, Tomasz Ponikiewski, Dawid Janas and Marian Kampik
Materials 2024, 17(20), 4972; https://doi.org/10.3390/ma17204972 - 11 Oct 2024
Abstract
One of the ways to turn concrete into smart concrete involves the incorporation of conductive fillers. These fillers should be evenly distributed in the matrix to enable the charge propagation necessary for sensing. To homogenize the mixture, typical surface-active chemical compounds are routinely [...] Read more.
One of the ways to turn concrete into smart concrete involves the incorporation of conductive fillers. These fillers should be evenly distributed in the matrix to enable the charge propagation necessary for sensing. To homogenize the mixture, typical surface-active chemical compounds are routinely employed. Unfortunately, their presence often negatively impacts the characteristics of concrete. In this work, we show that conductive multi-walled carbon nanotubes (MWCNTs) can be included in the concrete matrix by using off-the-shelf lignosulfonate-based plasticizers. These plasticizers showed a much-improved capability to disperse MWCNTs compared to other routinely used surfactants. They also prevented a significant deterioration of the consistency of the mixture and inhibited the acceleration of the hydration process by MWCNTs. In concretes with MWCNTs and lignosulfonate-based plasticizers, the mechanical properties were largely preserved, while the nanocomposite became electrically conductive. Consequently, it enabled evaluation of the condition of the material by electrical impedance measurements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 2884 KiB  
Review
Decarbonizing European Industry: A Novel Technology to Heat Supply Using Waste and Renewable Energy
by José Daniel Marcos, Iman Golpour, Rubén Barbero and Antonio Rovira
Appl. Sci. 2024, 14(19), 8994; https://doi.org/10.3390/app14198994 - 6 Oct 2024
Abstract
This study examines the potential for the smart integration of waste and renewable energy sources to supply industrial heat at temperatures between 150 °C and 250 °C, aiming to decarbonize heat demand in European industry. This work is part of a European project [...] Read more.
This study examines the potential for the smart integration of waste and renewable energy sources to supply industrial heat at temperatures between 150 °C and 250 °C, aiming to decarbonize heat demand in European industry. This work is part of a European project (SUSHEAT) which focuses on developing a novel technology that integrates several innovative components: a Stirling cycle high-temperature heat pump (HTHP), a bio-inspired phase change material (PCM) thermal energy storage (TES) system, and a control and integration twin (CIT) system based on smart decision-making algorithms. The objective is to develop highly efficient industrial heat upgrading systems for industrial applications using renewable energy sources and waste heat recovery. To achieve this, the specific heat requirements of different European industries were analyzed. The findings indicate that industrial sectors such as food and beverages, plastics, desalination, textiles, ceramics, pulp and paper, wood products, canned food, agricultural products, mining, and chemicals, typically require process heat at temperatures below 250 °C under conditions well within the range of the SUSHEAT system. Moreover, two case studies, namely the Pelagia and Mandrekas companies, were conducted to validate the effectiveness of the system. An analysis of the annual European heat demand by sector and temperature demonstrated that the theoretical potential heat demand that could be met by the SUSHEAT system is 134.92 TWh annually. Furthermore, an environmental impact assessment estimated an annual significant reduction of 19.40 million tonnes of CO2 emissions. These findings underscore the significant potential of the SUSHEAT system to contribute to the decarbonization of European industry by efficiently meeting heat demand and substantially reducing carbon emissions. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

34 pages, 13868 KiB  
Article
A Novel Approach of the Viscoelasticity of Axially Functional Graded Bar and Application of Harmonic Vibration Analysis of an Isotropic Beam as Support
by Cihan Demir
Appl. Sci. 2024, 14(19), 8974; https://doi.org/10.3390/app14198974 - 5 Oct 2024
Abstract
The use of smart materials and passive controllers in modern technologies has stimulated the study of vibration in elastic systems with viscoelastic damping. It is also possible to create components with precise material distribution coefficients and distinct properties, such as Functionally Graded Materials. [...] Read more.
The use of smart materials and passive controllers in modern technologies has stimulated the study of vibration in elastic systems with viscoelastic damping. It is also possible to create components with precise material distribution coefficients and distinct properties, such as Functionally Graded Materials. This work investigates the resonant frequency characteristics of a beam supported at its ends by Axially Functionally Graded (AFG) viscoelastic bars using the finite element method. The set of equations governing motion is obtained by assuming Euler–Bernoulli beam theory for the beam and bar theory for the bars using Lagrange’s equations. The material properties of the functionally graded bar is assumed to vary through the length according to the power law distribution. The longitudinal loss factor values are used to define the internal damping coefficient, which is also dependent on the Young’s modulus value varying along the bar. The effects of the length-varying material properties and internal damping of the FG support bars on the force transmission TR and frequency parameters λ are examined in detail. No study has been found in the literature on the vibration of viscoelastic FG bar-supported beams subjected to a harmonic force at the centre point. It is shown that using bars formed with combinations of different materials considering material damping will be useful to keep the vibration level and force transmission at a certain value and control the frequency parameters. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

29 pages, 3571 KiB  
Review
Advances in Smart-Response Hydrogels for Skin Wound Repair
by Yinuo Fan, Han Wang, Chunxiao Wang, Yuanhao Xing, Shuying Liu, Linhan Feng, Xinyu Zhang and Jingdi Chen
Polymers 2024, 16(19), 2818; https://doi.org/10.3390/polym16192818 - 5 Oct 2024
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to [...] Read more.
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic. Full article
(This article belongs to the Special Issue Biomedical Polymer Materials for Wound Healing)
Show Figures

Figure 1

9 pages, 3864 KiB  
Communication
Photoelectric H2S Sensing Based on Electrospun Hollow CuO-SnO2 Nanotubes at Room Temperature
by Cheng Zou, Cheng Peng, Xiaopeng She, Mengqing Wang, Bo Peng and Yong Zhou
Sensors 2024, 24(19), 6420; https://doi.org/10.3390/s24196420 - 3 Oct 2024
Abstract
Pure tin oxide (SnO2) as a typical conductometric hydrogen sulfide (H2S) gas-sensing material always suffers from limited sensitivity, elevated operation temperature, and poor selectivity. To overcome these hindrances, in this work, hollow CuO-SnO2 nanotubes were successfully electrospun for [...] Read more.
Pure tin oxide (SnO2) as a typical conductometric hydrogen sulfide (H2S) gas-sensing material always suffers from limited sensitivity, elevated operation temperature, and poor selectivity. To overcome these hindrances, in this work, hollow CuO-SnO2 nanotubes were successfully electrospun for room-temperature (25 °C) trace H2S detection under blue light activation. Among all SnO2-based candidates, a pure SnO2 sensor showed no signal, even toward 10 ppm, while the 1% CuO-SnO2 sensor achieved a limit of detection (LoD) value of 2.5 ppm, a large response of 4.7, and a short response/recovery time of 21/61 s toward 10 ppm H2S, as well as nice repeatability, long-term stability, and selectivity. This excellent performance could be ascribed to the one-dimensional (1D) hollow nanostructure, abundant p-n heterojunctions, and the photoelectric effect of the CuO-SnO2 nanotubes. The proposed design strategies cater to the demanding requirements of high sensitivity and low power consumption in future application scenarios such as Internet of Things and smart optoelectronic systems. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Figure 1

30 pages, 6280 KiB  
Review
Piezoelectric Scaffolds as Smart Materials for Bone Tissue Engineering
by Angelika Zaszczyńska, Konrad Zabielski, Arkadiusz Gradys, Tomasz Kowalczyk and Paweł Sajkiewicz
Polymers 2024, 16(19), 2797; https://doi.org/10.3390/polym16192797 - 2 Oct 2024
Abstract
Bone repair and regeneration require physiological cues, including mechanical, electrical, and biochemical activity. Many biomaterials have been investigated as bioactive scaffolds with excellent electrical properties. Amongst biomaterials, piezoelectric materials (PMs) are gaining attention in biomedicine, power harvesting, biomedical devices, and structural health monitoring. [...] Read more.
Bone repair and regeneration require physiological cues, including mechanical, electrical, and biochemical activity. Many biomaterials have been investigated as bioactive scaffolds with excellent electrical properties. Amongst biomaterials, piezoelectric materials (PMs) are gaining attention in biomedicine, power harvesting, biomedical devices, and structural health monitoring. PMs have unique properties, such as the ability to affect physiological movements and deliver electrical stimuli to damaged bone or cells without an external power source. The crucial bone property is its piezoelectricity. Bones can generate electrical charges and potential in response to mechanical stimuli, as they influence bone growth and regeneration. Piezoelectric materials respond to human microenvironment stimuli and are an important factor in bone regeneration and repair. This manuscript is an overview of the fundamentals of the materials generating the piezoelectric effect and their influence on bone repair and regeneration. This paper focuses on the state of the art of piezoelectric materials, such as polymers, ceramics, and composites, and their application in bone tissue engineering. We present important information from the point of view of bone tissue engineering. We highlight promising upcoming approaches and new generations of piezoelectric materials. Full article
(This article belongs to the Special Issue Electrospun Nanofibers for Medical and Bio Applications)
Show Figures

Figure 1

13 pages, 2371 KiB  
Article
Deflection and Performance Analysis of Shape Memory Alloy-Driven Fiber–Elastomer Composites with Anisotropic Structure
by Anett Endesfelder, Achyuth Ram Annadata, Aline Iobana Acevedo-Velazquez, Markus Koenigsdorff, Gerald Gerlach, Klaus Röbenack, Chokri Cherif and Martina Zimmermann
Materials 2024, 17(19), 4855; https://doi.org/10.3390/ma17194855 - 2 Oct 2024
Abstract
Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber–elastomer composite with integrated SMA wire is developed and investigated. [...] Read more.
Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber–elastomer composite with integrated SMA wire is developed and investigated. Bending and torsion occur when the SMA is activated because of the anisotropic structure of the textile. The metrological challenge in characterizing actuators that perform both bending and torsion lies in the large active deformation of the composite and the associated difficulties in fully imaging and analyzing this with optical measurement methods. In this work, a multi-sensor camera system with up to four pairs of cameras connected in parallel is used. The structure to be characterized is recorded from all sides to evaluate the movement in three-dimensional space. The energy input and the time required for an even deflection of the actuator are investigated experimentally. Here, the activation parameters for the practical energy input required for long life with good deflection, i.e., good efficiency, were analyzed. Different parameters and times are considered to minimize the energy input and, thus, to prevent possible overheating and damage to the wire. Thermography is used to evaluate the heating of the SMA wire at different actuation times over a defined time. Full article
Show Figures

Figure 1

17 pages, 5740 KiB  
Article
Dual-Responsive Alginate/PNIPAM Microspheres Fabricated by Microemulsion-Based Electrospray
by Gianluca Ciarleglio, Monica Placido, Elisa Toto and Maria Gabriella Santonicola
Polymers 2024, 16(19), 2765; https://doi.org/10.3390/polym16192765 - 30 Sep 2024
Abstract
Smart materials for drug delivery are designed to offer a precise and controlled release of therapeutic agents. By responding to specific physiological stimuli, such as changes in temperature and pH, these materials improve treatment efficacy and minimize side effects, paving the way for [...] Read more.
Smart materials for drug delivery are designed to offer a precise and controlled release of therapeutic agents. By responding to specific physiological stimuli, such as changes in temperature and pH, these materials improve treatment efficacy and minimize side effects, paving the way for personalized therapeutic solutions. In this study, we present the fabrication of dual-responsive alginate/poly(N-isopropylacrylamide) (PNIPAM) microspheres, having the ability to respond to both pH and temperature variations and embedding the lipophilic bioactive compound Ozoile. Ozoile® Stable Ozonides is obtained from extra virgin olive oil and acts as an inducer, interacting with major biological pathways by means of modulating the systemic redox balance. The dual-responsive microspheres are prepared by electrospray technique without the use of organic solvents. PNIPAM is synthesized by radical polymerization using the APS/TEMED redox initiators. The microspheres are further optimized with a chitosan coating to enhance their stability and modulate the degradation kinetics of the gel matrix. A comprehensive morphological analysis, Fourier transform infrared (FTIR) spectroscopy, and degradation assays are conducted to confirm the structural stability and pH-responsive behavior of the hydrogel microspheres. A study of the volume phase transition temperature (VPTT) by differential scanning calorimetry (DSC) is used to assess the microsphere thermal response. This research introduces a promising methodology for the development of targeted drug delivery systems, which are particularly useful in the context of oxidative stress modulation and inflammation management. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers)
Show Figures

Graphical abstract

28 pages, 5917 KiB  
Systematic Review
Promoting Synergies to Improve Manufacturing Efficiency in Industrial Material Processing: A Systematic Review of Industry 4.0 and AI
by Md Sazol Ahmmed, Sriram Praneeth Isanaka and Frank Liou
Machines 2024, 12(10), 681; https://doi.org/10.3390/machines12100681 - 29 Sep 2024
Abstract
The manufacturing industry continues to suffer from inefficiency, excessively high prices, and uncertainty over product quality. This statement remains accurate despite the increasing use of automation and the significant influence of Industry 4.0 and AI on industrial operations. This review details an extensive [...] Read more.
The manufacturing industry continues to suffer from inefficiency, excessively high prices, and uncertainty over product quality. This statement remains accurate despite the increasing use of automation and the significant influence of Industry 4.0 and AI on industrial operations. This review details an extensive analysis of a substantial body of literature on artificial intelligence (AI) and Industry 4.0 to improve the efficiency of material processing in manufacturing. This document includes a summary of key information (i.e., various input tools, contributions, and application domains) on the current production system, as well as an in-depth study of relevant achievements made thus far. The major areas of attention were adaptive manufacturing, predictive maintenance, AI-driven process optimization, and quality control. This paper summarizes how Industry 4.0 technologies like Cyber-Physical Systems (CPS), the Internet of Things (IoT), and big data analytics have been utilized to enhance, supervise, and monitor industrial activities in real-time. These techniques help to increase the efficiency of material processing in the manufacturing process, based on empirical research conducted across different industrial sectors. The results indicate that Industry 4.0 and AI both significantly help to raise manufacturing sector efficiency and productivity. The fourth industrial revolution was formed by AI, technology, industry, and convergence across different engineering domains. Based on the systematic study, this article critically explores the primary limitations and identifies potential prospects that are promising for greatly expanding the efficiency of smart factories of the future by merging Industry 4.0 and AI technology. Full article
(This article belongs to the Special Issue Feature Review Papers on Material Processing Technology)
Show Figures

Figure 1

39 pages, 4205 KiB  
Review
Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications
by Xiaoxu Liang, Hai-Jing Zhong, Hongyao Ding, Biao Yu, Xiao Ma, Xingyu Liu, Cheong-Meng Chong and Jingwei He
Polymers 2024, 16(19), 2755; https://doi.org/10.3390/polym16192755 - 29 Sep 2024
Abstract
Polyvinyl alcohol (PVA)-based hydrogels have attracted significant attention due to their excellent biocompatibility, tunable mechanical properties, and ability to form stable three-dimensional networks. This comprehensive review explores the recent advancements in PVA-based hydrogels, focusing on their unique properties, fabrication strategies, and multifunctional applications. [...] Read more.
Polyvinyl alcohol (PVA)-based hydrogels have attracted significant attention due to their excellent biocompatibility, tunable mechanical properties, and ability to form stable three-dimensional networks. This comprehensive review explores the recent advancements in PVA-based hydrogels, focusing on their unique properties, fabrication strategies, and multifunctional applications. Firstly, it discusses various facile synthesis techniques, including freeze/thaw cycles, chemical cross-linking, and enhancement strategies, which have led to enhanced mechanical strength, elasticity, and responsiveness to external stimuli. These improvements have expanded the applicability of PVA-based hydrogels in critical areas such as biomedical, environmental treatment, flexible electronics, civil engineering, as well as other emerging applications. Additionally, the integration of smart functionalities, such as self-healing capabilities and multi-responsiveness, is also examined. Despite progress, challenges remain, including optimizing mechanical stability under varying conditions and addressing potential toxicity of chemical cross-linkers. The review concludes by outlining future perspectives, emphasizing the potential of PVA-based hydrogels in emerging fields like regenerative medicine, environmental sustainability, and advanced manufacturing. It underscores the importance of interdisciplinary collaboration in realizing the full potential of these versatile materials to address pressing societal challenges. Full article
(This article belongs to the Special Issue Drug-Loaded Polymer Colloidal Systems in Nanomedicine III)
Show Figures

Figure 1

15 pages, 5338 KiB  
Article
Research on the Fabrication and Parameters of a Flexible Fiber Optic Pressure Sensor with High Sensitivity
by Huixin Zhang, Jing Wu and Chencheng Gao
Photonics 2024, 11(10), 919; https://doi.org/10.3390/photonics11100919 - 28 Sep 2024
Abstract
In recent years, flexible pressure sensors have garnered significant attention. However, the development of large-area, low-cost, and easily fabricated flexible pressure sensors remains challenging. We designed a flexible fiber optic pressure sensor for contact force detection based on the principle of backward Rayleigh [...] Read more.
In recent years, flexible pressure sensors have garnered significant attention. However, the development of large-area, low-cost, and easily fabricated flexible pressure sensors remains challenging. We designed a flexible fiber optic pressure sensor for contact force detection based on the principle of backward Rayleigh scattering using a single-mode optical fiber as the sensing element and polymer PDMS as the encapsulation material. To enhance the sensor’s sensitivity and stability, we optimized its structural design, parameters, and fabrication process and measured the fiber strain using an optical frequency domain reflectometer (OFDR). The results showed that the sensor achieved a high sensitivity of 6.93247 με/kPa with a PDMS concentration ratio of 10:1, a curing time of 2 h, and a substrate thickness of 5 mm. The sensor demonstrated excellent linearity and repeatability in static performance tests and was successfully used to monitor the plantar pressure distribution in real time. This flexible fiber optic pressure sensor can be developed via a simple fabrication process, has a low cost, and has high sensitivity, highlighting its potential applications in smart wearables and medical diagnostics. Full article
(This article belongs to the Special Issue Optical Sensors and Devices)
Show Figures

Figure 1

25 pages, 5085 KiB  
Article
Development and Application of Digital Twin Control in Flexible Manufacturing Systems
by Asif Ullah and Muhammad Younas
J. Manuf. Mater. Process. 2024, 8(5), 214; https://doi.org/10.3390/jmmp8050214 - 28 Sep 2024
Abstract
Flexible manufacturing systems (FMS) are highly adaptable production systems capable of producing a wide range of products in varying quantities. While this flexibility caters to evolving market demands, it also introduces complex scheduling and control challenges, making it difficult to optimize productivity, quality, [...] Read more.
Flexible manufacturing systems (FMS) are highly adaptable production systems capable of producing a wide range of products in varying quantities. While this flexibility caters to evolving market demands, it also introduces complex scheduling and control challenges, making it difficult to optimize productivity, quality, and energy efficiency. This paper explores the application of digital twin technology to tackle these challenges and enhance FMS optimization and control. A digital twin, constructed by integrating simulation models, data acquisition, and machine learning algorithms, was employed to replicate the behavior of a real-world FMS. This digital twin enabled real-time dynamic optimization and adaptive control of manufacturing operations, facilitating informed decision making and proactive adjustments to optimize resource utilization and process efficiency. Computational experiments were conducted to evaluate the digital twin implementation on an FMS equipped with robotic material handling, CNC machines, and automated inspection. Results demonstrated that the digital twin significantly improved FMS performance. Productivity was enhanced by 14.53% compared to conventional methods, energy consumption was reduced by 13.9%, and quality was increased by 15.8% through intelligent machine coordination. The dynamic optimization and closed-loop control capabilities of the digital twin significantly improved overall equipment effectiveness. This research highlights the transformative potential of digital twins in smart manufacturing systems, paving the way for enhanced productivity, energy efficiency, and defect reduction. The digital twin paradigm offers valuable capabilities in modeling, prediction, optimization, and control, laying the foundation for next-generation FMS. Full article
(This article belongs to the Special Issue Smart Manufacturing in the Era of Industry 4.0)
Show Figures

Figure 1

13 pages, 3698 KiB  
Article
Flexure Performance of Textile-Reinforced Cementitious Composites with Novel Inclined Reinforcements
by Esat Selim Kocaman, Thomas Henzel, Olcay Gurabi Aydogan and Can Gurer Yucel
Materials 2024, 17(19), 4743; https://doi.org/10.3390/ma17194743 - 27 Sep 2024
Abstract
Textile-reinforced cementitious composites have great potential to offer novel design opportunities for thin-section structures thanks to their superior material capabilities. In this work, new cementitious composites with novel reinforcement configurations are developed, which have superior mechanical properties. The cementitious composites contain inclined through-the-thickness [...] Read more.
Textile-reinforced cementitious composites have great potential to offer novel design opportunities for thin-section structures thanks to their superior material capabilities. In this work, new cementitious composites with novel reinforcement configurations are developed, which have superior mechanical properties. The cementitious composites contain inclined through-the-thickness reinforcements, and their enhanced performance on thin-section material hardening under flexural loading is demonstrated. Furthermore, a new practical FE modeling approach is proposed that involves the combined use of multiple cohesive regions and 1D reinforcement elements that pass through these regions with a bilinear material law. This approach provides a new computationally efficient modelling framework whereby reinforcement pull-out during hardening is readily captured without resorting to computationally demanding interface laws between the reinforcement and the cementititous matrix. The model can model enhanced hardening of new configurations and provides comparable results with the experimental findings. The model can be used in the modelling and design of novel cementitious composites with engineered reinforcement configurations. Overall, this study aims to open up new avenues for the smart material design of cementitious composites with novel structural reinforcements. Full article
Show Figures

Graphical abstract

26 pages, 2242 KiB  
Review
Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems
by Alan Portal D’Almeida and Tiago Lima de Albuquerque
Processes 2024, 12(10), 2085; https://doi.org/10.3390/pr12102085 - 26 Sep 2024
Abstract
This review highlights recent innovations in food packaging, emphasizing the shift from conventional petroleum-based materials to bio-based alternatives and smart packaging systems. Bio-based materials, such as starch, cellulose, and polyhydroxyalkanoates (PHA), offer sustainable solutions due to their biodegradability and reduced environmental impact. These [...] Read more.
This review highlights recent innovations in food packaging, emphasizing the shift from conventional petroleum-based materials to bio-based alternatives and smart packaging systems. Bio-based materials, such as starch, cellulose, and polyhydroxyalkanoates (PHA), offer sustainable solutions due to their biodegradability and reduced environmental impact. These materials are positioned as eco-friendly alternatives to traditional plastics but face challenges related to production costs and scalability. Additionally, advancements in smart packaging technologies, including sensor and indicator systems, provide real-time food quality monitoring, enhancing food safety and reducing waste. Active packaging technologies, incorporating natural antioxidants and moisture control, extend product shelf life and improve food preservation. Furthermore, these biopolymers typically present a lower CO2 footprint, energy costs, and water consumption during production, compared to traditionally used synthetic plastics. The review identifies challenges, such as regulatory barriers and technological limitations, but also outlines significant opportunities for future research and innovation in the food packaging sector, aiming for more efficient, safer, and environmentally sustainable packaging solutions. Full article
Show Figures

Figure 1

27 pages, 10269 KiB  
Article
Fatigue Life Predictions Using a Novel Adaptive Meshing Technique in Non-Linear Finite Element Analysis
by M. Thiruvannamalai, P. Vincent @ Venkatesan and Maheswaran Chellapandian
Buildings 2024, 14(10), 3063; https://doi.org/10.3390/buildings14103063 - 25 Sep 2024
Abstract
Fatigue is a common issue in steel elements, leading to microstructural fractures and causing failure below the yield point of the material due to cyclic loading. High fatigue loads in steel building structures can cause brittle failure at the joints and supports, potentially [...] Read more.
Fatigue is a common issue in steel elements, leading to microstructural fractures and causing failure below the yield point of the material due to cyclic loading. High fatigue loads in steel building structures can cause brittle failure at the joints and supports, potentially leading to partial or total damage. The present study deals with accurate prediction of the fatigue life and stress intensity factor (SIF) of pre-cracked steel beams, which is crucial for ensuring their structural integrity and durability under cyclic loading. A computationally efficient adaptive meshing tool, known as Separative Morphing Adaptive Remeshing Technology (SMART), in ANSYS APDL is employed to create a reliable three-dimensional finite element model (FEM) that simulates fatigue crack growth with a stress ratio of “R = 0”. The objective of this research is to examine the feasibility of using a non-linear FE model with an adaptive meshing technique, SMART, to predict the crack growth, fatigue life, and SIF on pre-cracked steel beams strengthened with FRP. Through a comprehensive parametric analysis, the effects of different types of FRPs (carbon and glass) and fiber orientations (θ = 0° to 90°) on both the SIF and fatigue life are evaluated. The results reveal that the use of longitudinally oriented FRP (θ = 0°) significantly reduces the SIF, resulting in substantial improvements in the fatigue life of up to 15 times with CFRP and 4.5 times with GFRP. The results of this study demonstrate that FRP strengthening significantly extends the fatigue life of pre-cracked steel beams, and the developed FE model is a reliable tool for predicting crack growth, SIF, and fatigue life. Full article
Show Figures

Figure 1

Back to TopTop