Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Virtual reality in neuroscience research and therapy

Key Points

  • Virtual reality (VR) combines a high degree of control with ecological validity, and has important benefits for basic neuroscience research and therapeutic applications.

  • VR is compatible with non-invasive imaging technologies, as well as with invasive cell recording techniques, which makes it uniquely valuable for studying brain activity during realistic situations. In recent years, researchers have developed VR systems that are compatible with animal research.

  • VR has provided new insights into the activity of brain regions involved in spatial cognition and navigation, multisensory integration of perceptual stimulation, and social interaction.

  • VR continues to accrue confirmatory evidence for the treatment of phobias owing to its ability to provide powerful sensory illusions within a highly controlled environment. The effects of VR on phobia treatment can be commensurate with in situ and imaginal exposure therapies, and it has been applied to the treatment of a wide range of phobias, as well as post-traumatic stress disorder.

  • The interactivity and motivation produced by VR stimuli have proven useful for neurorehabilitation after brain injury, as well as for pain reduction.

  • Brain–computer interface technology is rapidly improving, and VR environments are valuable for allowing patients to use neuromotor prosthetics in a safe environment.

  • VR is likely to become more ubiquitous as equipment continues to become more robust, inexpensive and easier to use. A likely trend will be towards increased mobility, particularly the use of augmented reality for research and therapy.

Abstract

Virtual reality (VR) environments are increasingly being used by neuroscientists to simulate natural events and social interactions. VR creates interactive, multimodal sensory stimuli that offer unique advantages over other approaches to neuroscientific research and applications. VR's compatibility with imaging technologies such as functional MRI allows researchers to present multimodal stimuli with a high degree of ecological validity and control while recording changes in brain activity. Therapists, too, stand to gain from progress in VR technology, which provides a high degree of control over the therapeutic experience. Here we review the latest advances in VR technology and its applications in neuroscience research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virtual reality environments for studying insect navigation.
Figure 2: Examples of virtual environments for therapeutic application.

Similar content being viewed by others

References

  1. Loomis, J. M. & Blascovich, J. J. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31, 557–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Tarr, M. J. & Warren, W. H. Virtual reality in behavioral neuroscience and beyond. Nature Neurosci. 5, 1089–1092 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Schultheis, M. T. & Rizzo, A. A. The application of virtual reality technology in rehabilitation. Rehabil. Psychol. 46, 296–311 (2001).

    Article  Google Scholar 

  4. Holden, M. K. Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8, 187–211 (2005).

    Article  PubMed  Google Scholar 

  5. Rizzo, A. A. & Kim, G. J. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence 14, 119–146 (2005).

    Article  Google Scholar 

  6. Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 1, 10 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Henderson, A., Korner-Bitensky, N. & Levin, M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14, 52–61 (2007).

    Article  PubMed  Google Scholar 

  8. Adamovich, S. V., Fluet, G. G., Tunik, E. & Merians, A. S. Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25, 29–44 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Biocca, F. & Levy, M. Communication in the Age of Virtual Reality (Lawrence Erlbaum Associates, Hillsdale, 1995).

    Google Scholar 

  10. Gibson, J. J. The Senses Considered as Perceptual Systems (Houghton-Mifflin, Boston, 1966).

    Google Scholar 

  11. Henderson, J. & Hollingsworth, A. The role of fixation position in detecting scene changes across saccades. Psychol. Sci. 10, 438–443 (1999).

    Article  Google Scholar 

  12. Astur, R. et al. fMRI hippocampal activity during a virtual radial arm maze. Appl. Psychophysiol. Biofeedback 30, 307–317 (2005). By combining a virtual radial arm maze with fMRI, this paper shows that human navigation may rely on frontal cortex activity in addition to hippocampal activity.

    Article  PubMed  Google Scholar 

  13. Shipman, S. & Astur, R. Factors affecting the hippocampal BOLD response during spatial memory. Behav. Brain Res. 187, 433–441 (2008).

    Article  PubMed  Google Scholar 

  14. Bohbot, V., Lerch, J., Thorndycraft, B., Iaria, G. & Zijdenbos, A. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J. Neurosci. 27, 10078–10083 (2007). Using a virtual radial maze to study human navigation strategies, this paper shows that individual differences in amount of hippocampal and caudate grey matter correspond to preferred navigation strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Driscoll, I., Hamilton, D., Yeo, R., Brooks, W. & Sutherland, R. Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Horm. Behav. 47, 326–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Moffat, S., Kennedy, K., Rodrigue, K. & Raz, N. Extrahippocampal contributions to age differences in human spatial navigation. Cereb. Cortex 17, 1274–1282 (2007). This study uses a virtual water maze to study age differences in human navigation, and suggests an age-related shift towards a non-spatial strategy to compensate for changes in hippocampal activity.

    Article  PubMed  Google Scholar 

  17. Voermans, N. et al. Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron 43, 427–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Frings, L. et al. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res. 78, 161–170 (2008).

    Article  PubMed  Google Scholar 

  19. Frings, L. et al. Gender-related differences in lateralization of hippocampal activation and cognitive strategy. Neuroreport 17, 417–421 (2006).

    Article  PubMed  Google Scholar 

  20. Ekstrom, A. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–187 (2003). Using a virtual navigation task, this study records place fields in the human hippocampus.

    Article  CAS  PubMed  Google Scholar 

  21. Weidemann, C., Mollison, M. & Kahana, M. Electrophysiological correlates of high-level perception during spatial navigation. Psychon. Bull. Rev. 16, 313–319 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacobs, J. et al. Right-lateralized brain oscillations in human spatial navigation. J. Cogn. Neurosci. 22, 824–836 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jacobs, J., Kahana, M., Ekstrom, A., Mollison, M. & Fried, I. A sense of direction in human entorhinal cortex. Proc. Natl Acad. Sci. USA 107, 6487–6492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nowak, N. T., Resnick, S. M., Elkins, W. & Moffat, S. D. Sex differences in brain activation during virtual navigation: a functional MRI study. Proc. of the 33rd Annual Meeting of the Cognitive Science Soc. (Boston, Masachusetts, USA) [online], (2011).

    Google Scholar 

  25. Gray, J., Pawlowski, V. & Willis, M. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Methods 120, 211–223 (2002). This paper describes one of the first successful attempts at creating a VR system for studying flight behaviour and neural activity in tethered insects.

    Article  PubMed  Google Scholar 

  26. Fry, S., Rohreseitz, N., Straw, A. & Dickinson, M. TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies. J. Neurosci. Methods 171, 110–117 (2008). This paper describes a free-flight VR environment designed for studying the flight behaviour of untethered insects.

    Article  PubMed  Google Scholar 

  27. Fry, S. N. et al. Context-dependent stimulus presentation to freely moving animals in 3D. J. Neurosci. Methods 135, 149–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Holscher, C., Schnee, A., Dahmen, H., Setia, L. & Mallot, H. A. Rats are able to navigate in virtual environments. J. Exp. Biol. 208, 561–569 (2005). This paper details a VR system for studying rodent navigation and demonstrates for the first time that rats can learn spatial tasks in a virtual environment.

    Article  CAS  PubMed  Google Scholar 

  29. Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009). This study combines in vivo neural recording with a track-ball VR system for studying rodent navigation, and reports hippocampal place-cell activity during movement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neurosci. 13, 1433–1440 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Slater, M., Spanlang, B., Sanchez-Vives, M. V. & Blanke, O. First person experience of body transfer in virtual reality. PLoS ONE 5, e10564 (2010). This paper demonstrates the power of VR for providing simultaneous realism and control. The authors find that viewer-perspective is more important than visuotactile stimulation in producing the body-transfer illusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Botvinick, M. & Cohen, J. Rubber hands 'feel' touch that eyes see. Nature 391, 756 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Ehrsson, H. H. The experimental induction of out-of-body experiences. Science 317, 1048 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lenggenhager, B., Tadi, T., Metzinger, T. & Blanke, O. Video ergo sum: manipulating bodily self-consciousness. Science 317, 1096–1099 (2007). In this influential paper, the authors demonstrate that the body-transfer illusion can be produced for full-body perception with virtual stimuli.

    Article  CAS  PubMed  Google Scholar 

  35. Slater, M., Usoh, M. & Steed, A. Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput. Hum. Interact. 2, 201–219 (1995).

    Article  Google Scholar 

  36. Slater, M. & Steed, A. A virtual presence counter. Presence 9, 413–434 (2000).

    Article  Google Scholar 

  37. Pelphrey, K. A. & Carter, E. J. Charting the typical and atypical development of the social brain. Dev. Psychopathol. 20, 1081–1102 (2008).

    Article  PubMed  Google Scholar 

  38. Spiers, H. & Maguire, E. Spontaneous mentalizing during an interactive real world task: an fMRI study. Neuropsychologia 44, 1674–1682 (2006).

    Article  PubMed  Google Scholar 

  39. Slater, M. et al. A virtual reprise of the Stanley Milgram obedience experiments. PLoS ONE 1, e39 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheetham, M., Pedroni, A. F., Antley, A., Slater, M. & Jancke, L. Virtual Milgram: emphathic concern or personal distress? Evidence from functional MRI and dispositional measures. Front. Hum. Neurosci. 3, 29 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Botvinick, M. et al. Viewing facial expressions in pain engages cortical areas involved in the direct experience of pain. Neuroimage 25, 312–319 (2005).

    Article  PubMed  Google Scholar 

  42. Montague, P. R., Berns, G. S. & Cohen, J. D. Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage 16, 1159–1164 (2002).

    Article  PubMed  Google Scholar 

  43. Riva, G. et al. Interreality in practice: bridging virtual and real worlds in the treatment of posttraumatic stress disorders. Cyberpsychol. Behav. Soc. Netw. 13, 55–65 (2010).

    Article  PubMed  Google Scholar 

  44. Alvarez, R. P., Johnson, L. & Grillon, C. Contextual-specificity of short-delay extinction in humans: renewal of fear-potentiated startle in a virtual environment. Learn. Mem. 14, 247–253 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gorini, A. & Riva, G. Virtual reality in anxiety disorders: the past and the future. Expert Rev. Neurother. 8, 215–233 (2008).

    Article  PubMed  Google Scholar 

  46. Rose, F. D., Brooks, B. M. & Rizzo, A. A. Virtual reality in brain damage rehabilitation: a review. CyberPsychol. Behav. 8, 241–262 (2005).

    Article  PubMed  Google Scholar 

  47. Riva, G. Virtual reality in psychotherapy: review. CyberPsychol. Behav. 8, 220–230 (2005).

    Article  PubMed  Google Scholar 

  48. Emmelkamp, P. M., Bruynzeel, M., Drost, L. & van der Mast, C. A. Virtual reality treatment in acrophobia: a comparison with exposure in vivo. CyberPsychol. Behav. 4, 335–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Emmelkamp, P. M. et al. Virtual reality treatment versus exposure in vivo: a comparative evaluation in acrophobia. Behav. Res. Ther. 40, 509–516 (2002). This paper demonstrates that VR exposure therapy rivals in situ exposure therapy for acrophobia, and that the results can be achieved with low-cost, readily available equipment.

    Article  CAS  PubMed  Google Scholar 

  50. Maltby, N., Kirsch, I., Mayers, M. & Allen, G. J. Virtual reality exposure therapy for the treatment of fear of flying: a controlled investigation. J. Consult. Clin. Psychol. 70, 1112–1118 (2002).

    Article  PubMed  Google Scholar 

  51. Rothbaum, B. O., Hodges, L., Smith, S., Lee, J. H. & Price, L. A controlled study of virtual reality exposure therapy for the fear of flying. J. Consult. Clin. Psychol. 68, 1020–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Viaud-Delmon, I., Warusfel, O., Seguelas, A., Rio, E. & Jouvent, R. High sensitivity to multisensory conflicts in agoraphobia exhibited by virtual reality. Eur. Psychiatry 21, 501–508 (2006).

    Article  PubMed  Google Scholar 

  53. Cardenas, G., Munoz, S., Gonzalez, M. & Uribarren, G. Virtual reality applications to agoraphobia: a protocol. CyberPsychol. Behav. 9, 248–250 (2006).

    Article  PubMed  Google Scholar 

  54. Vincelli, F. et al. Virtual reality assisted cognitive behavioral therapy for the treatment of panic disorders with agoraphobia. Stud. Health Technol. Inform. 85, 552–559 (2002).

    CAS  PubMed  Google Scholar 

  55. de Carvalho, M. R., Freire, R. C. & Nardi, A. E. Virtual reality as a mechanism for exposure therapy. World J. Biol. Psychiatry 11, 220–230 (2010).

    Article  PubMed  Google Scholar 

  56. Reger, G. et al. Effectiveness of virtual reality exposure therapy for active duty soldiers in a military mental health clinic. J. Trauma. Stress 24, 93–96 (2011).

    Article  PubMed  Google Scholar 

  57. Wiederhold, B. K. et al. The treatment of fear of flying: a controlled study of imaginal and virtual reality graded exposure therapy. IEEE Trans. Inf. Technol. Biomed. 6, 218–223 (2002).

    Article  PubMed  Google Scholar 

  58. Difede, J., Hoffman, H. & Jaysinghe, N. Innovative use of virtual reality technology in the treatment of PTSD in the aftermath of September 11. Psychiatr. Serv. 53, 1083–1085 (2002).

    Article  PubMed  Google Scholar 

  59. Difede, J. et al. Virtual reality exposure therapy for the treatment of posttraumatic stress disorder following September 11, 2001. J. Clin. Psychiatry 68, 1639–1647 (2007).

    Article  PubMed  Google Scholar 

  60. Wood, D. P. et al. Combat-related post-traumatic stress disorder: a case report using virtual reality graded exposure therapy with physiological monitoring with a female Seabee. Mil. Med. 174, 1215–1222 (2009).

    Article  PubMed  Google Scholar 

  61. Reger, G. M., Gahm, G. A., Rizzo, A. A., Swanson, R. & Duma, S. Soldier evaluation of the virtual reality Iraq. Telemed. J. e-Health 15, 101–104 (2009).

    Article  PubMed  Google Scholar 

  62. Macedonia, M. Virtual worlds: a new reality for treating post-traumatic stress disorder. IEEE Comput. Graph. Appl. 29, 86–88 (2009).

    Article  PubMed  Google Scholar 

  63. Gorrindo, T. & Groves, J. E. Computer simulation and virtual reality in the diagnosis and treatment of psychiatric disorders. Acad. Psychiatry 33, 413–417 (2009).

    Article  PubMed  Google Scholar 

  64. Wood, D. P. et al. Combat related post traumatic stress disorder: a multiple case report using virtual reality graded exposure therapy with physiological monitoring. Stud. Health Technol. Inform. 132, 556–561 (2008).

    PubMed  Google Scholar 

  65. Reger, G. M. & Gahm, G. A. Virtual reality exposure therapy for active duty soldiers. J. Clin. Psychol. 64, 940–946 (2008).

    Article  PubMed  Google Scholar 

  66. Parsons, T. D. & Rizzo, A. A. Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis. J. Behav. Ther. Exp. Psychiatry 39, 250–261 (2008).

    Article  PubMed  Google Scholar 

  67. Gerardi, M., Rothbaum, B. O., Ressler, K., Heekin, M. & Rizzo, A. Virtual reality exposure therapy using a virtual Iraq: case report. J. Trauma. Stress 21, 209–213 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beck, J. G., Palyo, S. A., Winer, E. H., Schwagler, B. E. & Ang, E. J. Virtual reality exposure therapy for PTSD symptoms after a road accident: an uncontrolled case series. Behav. Ther. 38, 39–48 (2007).

    Article  PubMed  Google Scholar 

  69. Rutter, C. E., Dahlquist, L. M. & Weiss, K. E. Sustained efficacy of virtual reality distraction. J. Pain 10, 391–397 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mahrer, N. E. & Gold, J. I. The use of virtual reality for pain control: a review. Curr. Pain Headache Rep. 13, 100–109 (2009).

    Article  PubMed  Google Scholar 

  71. Gold, J. I., Belmont, K. A. & Thomas, D. A. The neurobiology of virtual reality pain attenuation. CyberPsychol. Behav. 10, 536–544 (2007).

    Article  PubMed  Google Scholar 

  72. Magora, F., Cohen, S., Shochina, M. & Dayan, E. Virtual reality immersion method of distraction to control experimental ischemic pain. Isr. Med. Assoc. J. 8, 261–265 (2006).

    PubMed  Google Scholar 

  73. Ramachandran, V. S. & Rogers-Ramachandran, D. Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. B 263, 377–386 (1996).

    Article  CAS  Google Scholar 

  74. Murray, C., Patchick, E., Caillette, F., Howard, T. & Pettifer, S. Can immersive virtual reality reduce phantom limb pain? Stud. Health Technol. Inform. 119, 407–412 (2006).

    PubMed  Google Scholar 

  75. Cole, J., Crowle, S., Austwick, G. & Slater, D. H. Exploratory findings with virtual reality for phantom limb pain: from stump motion to agency and analgesia. Disabil. Rehabil. 31, 846–854 (2009).

    Article  PubMed  Google Scholar 

  76. Hoffman, H. G. et al. Water-friendly virtual reality pain control during wound care. J. Clin. Psychol. 60, 189–195 (2004). This study involved burn victims, and showed that patients interacting with a virtual environment designed to induce thoughts of 'cold' reported less pain than control patients.

    Article  PubMed  Google Scholar 

  77. Hoffman, H. G. et al. Modulation of thermal-pain related brain activity with virtual reality: evidence from fMRI. NeuroReport 15, 1245–1248 (2004).

    Article  PubMed  Google Scholar 

  78. Malloy, K. M. & Milling, L. S. The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clin. Psychol. Rev. 30, 1011–1018 (2010).

    Article  PubMed  Google Scholar 

  79. Law, E. F. et al. Videogame distraction using virtual reality technology for children experiencing cold pressor pain: the role of cognitive processing. J. Pediatr. Psychol. 23 Jul 2010 (doi:10.1093/jpepsy/jsq063).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gutierrez-Maldonado, J., Gutierrez-Martinez, O., Loreto, D., Penaloza, C. & Nieto, R. Presence, involvement and efficacy of a virtual reality intervention on pain. Stud. Health Technol. Inform. 154, 97–101 (2010).

    PubMed  Google Scholar 

  81. Wender, R. et al. Interactivity influences the magnitude of virtual reality analgesia. J. Cyber. Ther. Rehabil. 2, 27–33 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Hoffman, H. G. et al. Virtual reality pain control during burn wound debridement in the hydrotank. Clin. J. Pain 24, 299–304 (2008).

    Article  PubMed  Google Scholar 

  83. Jeka, J. Light touch contact: not just for surfers. Neuromorphic Engineer 3, 5–6 (2006).

    Google Scholar 

  84. Jeka, J. J., Kiemel, T., Creath, R., Horak, F. B. & Peterka, R. Controlling human upright stance: velocity information is more accurate than position or acceleration. J. Neurophysiol. 92, 2368–2379 (2004).

    Article  PubMed  Google Scholar 

  85. Cameirão, M. S., Badia, S. B., Oller, E. D. & Verschure, P. F. M. J. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J. Neuroeng. Rehabil. 7, 48 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gaggioli, A., Meneghini, A., Morganti, F., Alcaniz, M. & Riva, G. A strategy for computer-assisted mental practice in stroke rehabilitation. Neurorehabil. Neural Repair 20, 503–507 (2006).

    Article  PubMed  Google Scholar 

  87. Earhart, G. M., Henckens, J. M., Carlson-Kuhta, P. & Horak, F. B. Influence of vision on adaptive postural responses following standing on an incline. Exp. Brain Res. 203, 221–226 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dozza, M., Horak, F. B. & Chiari, L. Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp. Brain Res. 178, 37–48 (2007).

    Article  PubMed  Google Scholar 

  89. Holden, M. K., Dyar, T. A., Schwamm, L. & Bizzi, E. Virtual-environment-based telerehabilitation in patients with stroke. Presence 14, 214–233 (2005).

    Article  Google Scholar 

  90. August, K. et al. fMRI analysis of neural mechanisms underlying rehabilitation in virtual reality: activating secondary motor areas. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3692–3695 (2006).

  91. Adamovich, S. V., August, K., Merians, A. S. & Tunik, E. A virtual reality-based system integrated with fMRI to study neural mechanisms of activation observation-execution: a proof of concept study. Restor. Neurol. Neurosci. 27, 209–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Baram, Y. & Lenger, R. Virtual reality visual feedback cues for gait improvement in children with gait disorders due to cerebral palsy. Proc. of the 19th Meeting of the European Neurological Soc. (Milan, Italy) [online], (2009).

    Google Scholar 

  93. Baram, Y. & Miller, A. Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology 66, 178–181 (2006).

    Article  PubMed  Google Scholar 

  94. Merians, A. S., Poizner, H., Boian, R., Burdea, G. & Adamovich, S. Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil. Neural Repair 20, 252–267 (2006).

    Article  PubMed  Google Scholar 

  95. Adamovich, S. V. et al. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J. Neuroeng. Rehabil. 6, 28 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Henderson, A., Korner-Bitensky, N. & Levin, M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14, 52–61 (2007).

    Article  PubMed  Google Scholar 

  97. Merians, A. S. et al. Virtual reality — augmented rehabilitation for patients following stroke. Phys. Ther. 82, 898–915 (2002).

    PubMed  Google Scholar 

  98. Lecuyer, A. et al. Brain-computer interfaces, virtual reality, and videogames. Computer 41, 66–72 (2008).

    Article  Google Scholar 

  99. Carmena, J. M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lebedev, M. A. & Nicoleleis, M. A. Brain machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Donoghue, J., Nurmikko, A., Friehs, G. & Black, M. Development of a neuromotor prosthesis for humans. Suppl. Clin. Neurophysiol. 57, 588–602 (2004).

    Google Scholar 

  102. Donoghue, J. P. Bridging the brain to the world: a perspective on neural interface systems. Neuron 60, 511–521 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Wolpaw, J. R., McFarland, D. J., Vaughan, T. M. & Schalk, G. The Wadsworth Center Brain-Computer Interface (BCI) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 204–207 (2003).

    Article  PubMed  Google Scholar 

  104. Cerf, M. et al. On-line, voluntary control of human temporal lobe neurons. Nature 467, 1104–1108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma, C. & He, J. A novel experimental system for investigation of cortical activities related to lower limb movements. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 2679–2682 (2006).

    Article  Google Scholar 

  106. Scott, S. H. Converting thoughts into action. Nature 442, 141–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Shadmehr, R. & Wise, S. P. The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. (MIT Press, Cambridge, USA, 2005).

    Google Scholar 

  108. Helms-Tillery, S. I., Taylor, D. M. & Schwartz, A. B. Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles. Rev. Neurosci. 14, 107–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Bunce, S. C., Izzetoglu, M., Izzetoglu, K. & Onaral, B. Functional near-infrared spectroscopy: an emerging neuroimaging modality. IEEE Eng. Med. Biol. Mag. 25, 54–62 (2006).

    Article  PubMed  Google Scholar 

  110. Barfield, W. & Danas, E. Comments on the use of olfactory displays for virtual environments. Presence 5, 109–121 (1995).

    Article  Google Scholar 

  111. Cater, J. P. The nose have it! Presence 1, 493–494 (1992).

    Google Scholar 

  112. Keller, P. E., Kouzes, R. T. & Kangas, L. J. in Interactive Technology and the New Paradigm for Healthcare (Studies in Health Technology and Informatics) (eds Satava, R. M., Morgan, K., Sieburg, H. B., Mattheus, R. & Christensen, J. P.) 168–172 (IOS Press, Washington DC, USA, 1995).

    Google Scholar 

  113. Yanagida, Y., Kawato, S., Noma, H., Tomono, A. & Tesutani, N. Projection based olfactory display with nose tracking. Proc. of the IEEE Virtual Reality Conf. 2004 [online], (2004).

    Google Scholar 

  114. Zimmer, H., Mecklinger, A. & Lindenberger, U. (eds) Handbook of Binding and Memory: Perspectives from Cognitive Neuroscience (Oxford Univ. Press, USA, 2006).

    Book  Google Scholar 

  115. Cholewiak, R. W. & Collins, A. A. Vibrotactile pattern discrimination and communality at several body sites. Percept. Psychophys. 57, 724–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Krueger, M. Artificial Reality (Addison-Wesley, New York, 1991).

    Google Scholar 

  117. Biocca, F. The cyborg's dilemma: progressive embodiment in virtual environments. J. Comput. Mediat. Commun. 23 Jun 2006 (doi:10.1111/j.1083-6101.1997.tb00070.x).

    Article  Google Scholar 

  118. Lombard, M. & Ditton, T. At the heart of it all: the concept of presence. J. Comput. Mediat. Commun. 23 Jun 2006 (doi:10.1111/j.1083-6101.1997.tb00072.x).

    Article  Google Scholar 

  119. Meehan, M., Insko, B., Whitton, M. & Brooks F. P. Jr. Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. 21, 645–652 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant number R31-10062 to F.A.B. from the World Class University (WCU) project of the Korean Ministry of Education, Science and Technology (MEST) and the Korea National Research Foundation (NRF) through Sungkyunkwan University. The project was also supported in part by the AT&T and Newhouse endowments awarded to F.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey J. Bohil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Corey J. Bohil's homepage

Glossary

Ecological validity

Refers to experimental conditions that are reasonably similar to those in a real-world setting. In virtual environments, contextually rich simulations with multiple sensory cues might be considered to have greater ecological validity than environments that are limited to only the necessary and sufficient features for an experiment.

Morris water maze

A classic experimental paradigm used to assess spatial navigation abilities. Traditionally, an animal swims around a pool for a number of trials, freely exploring the space. In later trials, the goal is to find the fastest route to a submerged platform.

Place cell

Hippocampal cell that encodes different components of the relationships between spatial locations.

Place fields

Populations of hippocampal place cells that enable the formation of spatial memories. Collectively, these 'fields' enable the encoding and recall of complex spatial relationships.

Binding problem

The integration of sensory cues and information in higher-level cortical regions underlies cognition and consciousness. Binding requires large-scale synchronization of cortical activity to create a unified perceptual experience.

Theory of mind

The ability to empathize with another individual. It involves the tendency of humans to attribute mental states — such as goals, beliefs and knowledge — to another individual that are in some way analogous with our own mental state.

Mentalizing

Mentalizing is the process of interpreting the intention of others, allowing one to anticipate the behaviour of objects and individuals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohil, C., Alicea, B. & Biocca, F. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci 12, 752–762 (2011). https://doi.org/10.1038/nrn3122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing