Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses

Abstract

Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These ‘tip domain’ niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain ‘ages’ relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kidney curvature imposes topological requirements on geometry of close-packed nephrogenic niches at UB epithelial tubule tips.
Fig. 2: Close packing of UB tip domains predicts a transition to rigidity over developmental time.
Fig. 3: Crowding of UB tip domains stiffens the nephrogenic niche over time, especially in close-packed regions.
Fig. 4: Domain size and stromal cell elongation and alignment at ribbon interfaces between domains is dependent on myosin II.
Fig. 5: Newly established tip domains experience anisotropic mechanical stress that decreases over each life cycle.
Fig. 6: Model for curvature and crowding contributions to nephrogenic niche packing and its effects on mechanics.

Similar content being viewed by others

Data availability

All data necessary to evaluate the conclusions of this study are presented in the paper and Supplementary Information. Raw image stacks are available upon request due to prohibitive file sizes. Source data are available via Github at https://github.com/ahug030/kidney_jamming.

Code availability

Code used to generate curvature and height maps, Voronoi networks and shape index data, and sphere packing simulations is available at https://github.com/ahug030/kidney_jamming.

References

  1. Rumballe, B. A. et al. Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev. Biol. 360, 110–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lindström, N. O. et al. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. Elife 3, e04000 (2015).

    Article  PubMed  Google Scholar 

  3. Short, K. M. et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev. Cell 29, 188–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Combes, A. N., Lefevre, J. G., Wilson, S., Hamilton, N. A. & Little, M. H. Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Dev. Biol. 418, 297–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Carroll, T. J., Park, J.-S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, A. C. et al. Role for compartmentalization in nephron progenitor differentiation. Proc. Natl Acad. Sci. USA 110, 4640–4645 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mederacke, M., Conrad, L., Doumpas, N., Vetter, R. & Iber, D. Geometric effects position renal vesicles during kidney development. Cell Rep. 42, 113526 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Lindström, N. O. et al. Spatial transcriptional mapping of the human nephrogenic program. Dev. Cell 56, 2381–2398.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lindström, N. O. et al. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev. Cell 45, 651–660.e4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prahl, L. S., Viola, J. M., Liu, J. & Hughes, A. J. The developing murine kidney actively negotiates geometric packing conflicts to avoid defects. Dev. Cell 58, 110–120.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Irvine, W. T. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Jiménez, F. L., Stoop, N., Lagrange, R., Dunkel, J. & Reis, P. M. Curvature-controlled defect localization in elastic surface crystals. Phys. Rev. Lett. 116, 104301 (2016).

    Article  PubMed  Google Scholar 

  14. Brojan, M., Terwagne, D., Lagrange, R. & Reis, P. M. Wrinkling crystallography on spherical surfaces. Proc. Natl Acad. Sci. USA 112, 14–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Bowick, M. J. & Giomi, L. Two-dimensional matter: order, curvature and defects. Adv. Phys. 58, 449–563 (2009).

    Article  CAS  Google Scholar 

  16. Davies, J. A., Hohenstein, P., Chang, C.-H. & Berry, R. A self-avoidance mechanism in patterning of the urinary collecting duct tree. BMC Dev. Biol. 14, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. England, A. R. et al. Identification and characterization of cellular heterogeneity within the developing renal interstitium. Development 147, dev190108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao, Z. Stress-induced ordering of two-dimensional packings of elastic spheres. Phys. Rev. E 101, 062904 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  Google Scholar 

  20. Sullivan, J. M. in Foams and Emulsions (eds Sadoc, J. F. & Rivier, N.) 379–402 (Springer Netherlands, 1999).

  21. Honda, H. Description of cellular patterns by Dirichlet domains: the two-dimensional case. J. Theor. Biol. 72, 523–543 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Lindström, N. O. et al. Conserved and divergent features of human and mouse kidney organogenesis. J. Am. Soc. Nephrol. 29, 785–805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Princen, H. M. Rheology of foams and highly concentrated emulsions: I. Elastic properties and yield stress of a cylindrical model system. J. Colloid Interface Sci. 91, 160–175 (1983).

    Article  CAS  Google Scholar 

  24. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mason, T. G., Bibette, J. & Weitz, D. A. Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439–448 (1996).

    Article  CAS  Google Scholar 

  26. Bolton, F. & Weaire, D. Rigidity loss transition in a disordered 2D froth. Phys. Rev. Lett. 65, 3449–3451 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

    Article  CAS  Google Scholar 

  28. Farhadifar, R., Röper, J.-C., Aigouy, B., Eaton, S. & Jülicher, F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sussman, D. M. & Merkel, M. No unjamming transition in a Voronoi model of biological tissue. Soft Matter 14, 3397–3403 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Merkel, M., Baumgarten, K., Tighe, B. P. & Manning, M. L. A minimal-length approach unifies rigidity in underconstrained materials. Proc. Natl Acad. Sci. USA 116, 6560–6568 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sussman, D. M. Interplay of curvature and rigidity in shape-based models of confluent tissue. Phys. Rev. Res. 2, 023417 (2020).

    Article  CAS  Google Scholar 

  33. Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photon. 2, 39–43 (2007).

    Article  Google Scholar 

  34. Handler, C., Scarcelli, G. & Zhang, J. Time-lapse mechanical imaging of neural tube closure in live embryo using Brillouin microscopy. Sci. Rep. 13, 263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bevilacqua, C. et al. High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development. Nat. Methods 20, 755–760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schlüßler, R. et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging. Biophys. J. 115, 911–923 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, J. et al. Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small 16, 1907688 (2020).

    Article  CAS  Google Scholar 

  38. Rosines, E. et al. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney. Tissue Eng. A 16, 2441–2455 (2010).

    Article  CAS  Google Scholar 

  39. Davis, S. N. et al. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. Preprint at bioRxiv https://doi.org/10.1101/2023.11.21.568157 (2023).

  40. Ishizaki, T. et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57, 976–983 (2000).

    CAS  PubMed  Google Scholar 

  41. Viola, J. M. et al. Rho/ROCK activity tunes cell compartment segregation and differentiation in nephron-forming niches. Preprint at bioRxiv https://doi.org/10.1101/2023.11.08.566308 (2023).

  42. Kong, W. et al. Experimental validation of force inference in epithelia from cell to tissue scale. Sci. Rep. 9, 14647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chiou, K. K., Hufnagel, L. & Shraiman, B. I. Mechanical stress inference for two dimensional cell arrays. PLoS Comput. Biol. 8, e1002512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zulueta-Coarasa, T. & Fernandez-Gonzalez, R. in Integrative Mechanobiology (eds Sun, Y. et al.) 128–147 (Cambridge Univ. Press, 2015).

  45. Volovelsky, O. et al. Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proc. Natl Acad. Sci. USA 115, 5998–6003 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cebrian, C., Asai, N., D’Agati, V. & Costantini, F. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep. 7, 127–137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoy, W. E., Hughson, M. D., Bertram, J. F., Douglas-Denton, R. & Amann, K. Nephron number, hypertension, renal disease, and renal failure. J. Am. Soc. Nephrol. 16, 2557–2564 (2005).

    Article  PubMed  Google Scholar 

  48. Lefevre, J. G. et al. Branching morphogenesis in the developing kidney is governed by rules that pattern the ureteric tree. Development 144, 4377–4385 (2017).

    CAS  PubMed  Google Scholar 

  49. Lawlor, K. T. et al. Nephron progenitor commitment is a stochastic process influenced by cell migration. Elife 8, e41156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Howden, S. E., Vanslambrouck, J. M., Wilson, S. B., Tan, K. S. & Little, M. H. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep. 20, e47483 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wanek, N., Muneoka, K., Holler-Dinsmore, G., Burton, R. & Bryant, S. V. A staging system for mouse limb development. J. Exp. Zool. 249, 41–49 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Barak, H. & Boyle, S. C. Organ culture and immunostaining of mouse embryonic kidneys. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5558 (2011).

  53. Combes, A. N. et al. An integrated pipeline for the multidimensional analysis of branching morphogenesis. Nat. Protoc. 9, 2859–2879 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. O’Brien, L. L. et al. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. Elife 7, e40392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Negri, C., Sellerio, A. L., Zapperi, S. & Miguel, M. C. Deformation and failure of curved colloidal crystal shells. Proc. Natl Acad. Sci. USA 112, 14545–14550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prahl, L. S., Porter, C. M., Liu, J., Viola, J. M. & Hughes, A. J. Independent control over cell patterning and adhesion on hydrogel substrates for tissue interface mechanobiology. iScience 26, 106657 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, J. & Scarcelli, G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat. Protoc. 16, 1251–1275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bolin, F. P., Preuss, L. E., Taylor, R. C. & Ference, R. J. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, 2297–2303 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Hariri, A. et al. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. Photoacoustics 22, 100245 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Levental, I. et al. A simple indentation device for measuring micrometer-scale tissue stiffness. J. Phys. Condens. Matter 22, 194120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayes, W. C., Keer, L. M., Herrmann, G. & Mockros, L. F. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541–551 (1972).

    Article  CAS  PubMed  Google Scholar 

  62. Aigouy, B., Umetsu, D. & Eaton, S. Segmentation and quantitative analysis of epithelial tissues. Methods Mol. Biol. 1478, 227–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Ishihara, S. & Sugimura, K. Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201–211 (2012).

    Article  PubMed  Google Scholar 

  64. Guirao, B. et al. Unified quantitative characterization of epithelial tissue development. Elife 4, e08519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Hughes lab members Z. Gartner, C. Nelson and M. Little for discussions and advice. We are grateful to K. Bennett at the Molecular Pathology and Imaging Core, Gastroenterology Division, Penn Medicine for technical assistance with laser ablation studies; and D. Li and P. Janmey for access to and training on microindentation. We thank N. Lindström for sending the supplementary image files from ref. 22. This work was supported by the following: NIH F32 fellowship DK126385 and Penn Center for Soft & Living Matter fellowship (L.S.P.), the Predoctoral Training Program in Developmental Biology T32HD083185 (J.M.V.), National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP; J.L., T.J.C., G.H.-L. and C.M.P.), NIH National Institute of Child Health and Human Development (NICHD) K25HD097288 (J.Z.), NIH NICHD R21HD112663 (J.Z.), NIH National Institute of General Medical Sciences (NIGMS) Maximizing Investigators’ Research Award (MIRA) R35GM133380 (A.J.H.), NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) R01DK132296 (A.J.H.) and NSF CAREER awards 2339278 (J.Z.) and 2047271 (A.J.H.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was by L.S.P., J.M.V., T.J.C. and A.J.H. Methodology was by L.S.P., J.L., J.M.V., A.H., T.J.C., G.H.-L., C.M.P., J.Z. and A.J.H. Software was by J.M.V., T.J.C., J.Z. and A.J.H. Formal analysis was by J.M.V., T.J.C., J.Z. and A.J.H. Investigation was by L.S.P., J.L., J.M.V., A.H., T.J.C., G.H.-L., C.M.P., C.S., J.Z. and A.J.H. Writing the original draught was by J.Z. and A.J.H. Reviewing and editing was by L.S.P., J.L., J.M.V., A.H., T.J.C., G.H.-L., C.M.P., J.Z. and A.J.H. Visualization was by L.S.P., J.M.V., T.J.C., G.H.-L., C.S., J.Z. and A.J.H. Supervision was by L.S.P., J.Z. and A.J.H. Project administration was by J.Z. and A.J.H.

Corresponding author

Correspondence to Alex J. Hughes.

Ethics declarations

Competing interests

L.S.P., J.M.V., J.L., A.H., C.M.P. and A.J.H. are listed as co-inventors on a published University of Pennsylvania international patent (WO 2023/235828 A1) relating to mechanics of nephrogenesis.

Peer review

Peer review information

Nature Materials thanks Nuria Montserrat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Video Captions 1–3, Notes 1–11 and references.

Reporting Summary

Supplementary Video 1

Coordination of UB tip branching morphogenesis and nephron formation.

Supplementary Video 2

Asynchronous tip branching disrupts crystal-packed regions of tip domains in silico.

Supplementary Video 3

Laser ablation causes rebound of cap mesenchyme and stroma between pairs of UB tips.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prahl, L.S., Liu, J., Viola, J.M. et al. Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses. Nat. Mater. 23, 1582–1591 (2024). https://doi.org/10.1038/s41563-024-02019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02019-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing