Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

More is different in real-world multilayer networks

An Author Correction to this article was published on 20 September 2023

This article has been updated

Abstract

The constituents of many complex systems are characterized by non-trivial connectivity patterns and dynamical processes that are well captured by network models. However, most systems are coupled with each other through interdependencies, characterized by relationships among heterogeneous units, or multiplexity, characterized by the coexistence of different kinds of relationships among homogeneous units. Multilayer networks provide the framework to capture the complexity typical of systems of systems, enabling the analysis of biophysical, social and human-made networks from an integrated perspective. Here I review the most important theoretical developments in the past decade, showing how the layered structure of multilayer networks is responsible for phenomena that cannot be observed from the analysis of subsystems in isolation or from their aggregation, including enhanced diffusion, emergent mesoscale organization and phase transitions. I discuss applications spanning multiple spatial scales, from the cell to the human brain and to ecological and social systems, and offer perspectives and challenges on future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synchronization dynamics in multilayer networks.
Fig. 2: Cascade failures and percolation in multilayer networks.
Fig. 3: Coarse-graining a multilayer system.
Fig. 4: Large-scale structure of biomolecular interactions.
Fig. 5: Protein–protein interactions network.
Fig. 6: Virus-host interactions.
Fig. 7: Unfolding of empirical interdependent processes.

Similar content being viewed by others

Change history

References

  1. Watts, D. J. & Strogatz, S. H. Collective dynamics of small-world networks. Nature 393, 440–442 (1998).

    Article  ADS  MATH  Google Scholar 

  2. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    Article  ADS  MATH  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Erdös, P. & Rényi, A. On random graphs, I. Publicationes Math. (Debrecen) 6, 290–297 (1959).

    MathSciNet  MATH  Google Scholar 

  5. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    Article  ADS  Google Scholar 

  7. Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D. Scale-free networks well done. Phys. Rev. Res. 1, 033034 (2019).

    Article  Google Scholar 

  8. Serafino, M. et al. True scale-free networks hidden by finite size effects. Proc. Natl Acad. Sci. USA 118, e2013825118 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. Newman, M. E. J. Communities, modules and large-scale structure in networks. Nat. Phys. 8, 25–31 (2012).

    Article  Google Scholar 

  10. Fortunato, S. & Hric, D. Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  ADS  Google Scholar 

  12. Peixoto, T. P. Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014).

    Google Scholar 

  13. Boguna, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).

    Article  Google Scholar 

  14. Arenas, A., Diaz-Guilera, A. & Pérez-Vicente, C. J. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006).

    Article  ADS  Google Scholar 

  15. O’Keeffe, K. P., Hong, H. & Strogatz, S. H. Oscillators that sync and swarm. Nat. Commun. 8, 1504 (2017).

    Article  ADS  Google Scholar 

  16. Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  ADS  Google Scholar 

  17. Guimera, R., Sales-Pardo, M. & Amaral, L. A. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3, 63–69 (2007).

    Article  ADS  Google Scholar 

  18. Cornelius, S. P., Kath, W. L. & Motter, A. E. Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013).

    Article  ADS  Google Scholar 

  19. Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013).

    Article  Google Scholar 

  20. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  ADS  Google Scholar 

  21. Esquivel, A. V. & Rosvall, M. Compression of flow can reveal overlapping-module organization in networks. Phys. Rev. X 1, 021025 (2011).

    Google Scholar 

  22. De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).

    Google Scholar 

  23. Harush, U. & Barzel, B. Dynamic patterns of information flow in complex networks. Nat. Commun. 8, 2181 (2017).

    Article  ADS  Google Scholar 

  24. Masuda, N., Porter, M. A. & Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 716, 1–58 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hens, C., Harush, U., Haber, S., Cohen, R. & Barzel, B. Spatiotemporal signal propagation in complex networks. Nat. Phys. 15, 403–412 (2019).

    Article  Google Scholar 

  26. Ji, P., Lin, W. & Kurths, J. Asymptotic scaling describing signal propagation in complex networks. Nat. Phys. 16, 1082–1083 (2020).

    Article  Google Scholar 

  27. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008).

    Article  ADS  Google Scholar 

  29. Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019).

    Article  Google Scholar 

  30. Rosato, V. et al. Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4, 63–79 (2008).

    Article  Google Scholar 

  31. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  Google Scholar 

  32. De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015).

    Article  ADS  Google Scholar 

  33. Bentley, B. et al. The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016).

    Article  Google Scholar 

  34. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  35. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale and multiplex networks. Science 328, 876–878 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Szell, M., Lambiotte, R. & Thurner, S. Multirelational organization of large-scale social networks in an online world. Proc. Natl Acad. Sci. USA 107, 13636–13641 (2010).

    Article  ADS  Google Scholar 

  37. Cardillo, A. et al. Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013).

    Article  Google Scholar 

  38. Reis, S. D. S. et al. Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10, 762–767 (2014).

    Article  Google Scholar 

  39. Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).

    Article  ADS  Google Scholar 

  40. Gray, C. et al. Ecological plasticity governs ecosystem services in multilayer networks. Commun. Biol. 4, 75 (2021).

    Article  Google Scholar 

  41. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).

    Article  Google Scholar 

  42. Kivelä, M. et al. Multilayer networks. J. Complex Networks 2, 203–271 (2014).

    Article  Google Scholar 

  43. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  44. Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015).

    Article  ADS  Google Scholar 

  45. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 12, 901–906 (2016).

    Article  Google Scholar 

  46. Battiston, F., Nicosia, V. & Latora, V. The new challenges of multiplex networks: measures and models. Eur. Phys. J. Special Topics 226, 401–416 (2017).

    Article  ADS  Google Scholar 

  47. Cozzo, E., De Arruda, G. F., Rodrigues, F. A. & Moreno, Y. Multiplex Networks: Basic Formalism and Structural Properties (Springer, 2018).

  48. Bianconi, G. Multilayer Networks: Structure and Function (Oxford Univ. Press, 2018).

  49. De Domenico, M. Multilayer Networks: Analysis and Visualization 1st edn (Springer, 2022).

  50. Artime, O. et al. Multilayer Network Science. Elements in Structure and Dynamics of Complex Networks (Cambridge Univ. Press, 2022).

  51. Gao, J., Bashan, A., Shekhtman, L. & Havlin, S. in Introduction to Networks of Networks 2053–2563 (IOP Publishing, 2022); https://doi.org/10.1088/978-0-7503-1046-8

  52. Bianconi, G. Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013).

    Article  ADS  Google Scholar 

  53. Nicosia, V., Bianconi, G., Latora, V. & Barthelemy, M. Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013).

    Article  ADS  Google Scholar 

  54. Nicosia, V., Bianconi, G., Latora, V. & Barthelemy, M. Nonlinear growth and condensation in multiplex networks. Phys. Rev. E 90, 042807 (2014).

    Article  ADS  Google Scholar 

  55. Santoro, A., Latora, V., Nicosia, G. & Nicosia, V. Pareto optimality in multilayer network growth. Phys. Rev. Lett. 121, 128302 (2018).

    Article  ADS  Google Scholar 

  56. De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).

    Article  ADS  Google Scholar 

  57. Solá, L. et al. Eigenvector centrality of nodes in multiplex networks. Chaos 23, 033131 (2013).

    Article  ADS  MATH  Google Scholar 

  58. Solé-Ribalta, A., De Domenico, M., Gómez, S. & Arenas, A. Centrality rankings in multiplex networks. In Proc. 2014 ACM Conference on Web Science 149–155 (ACM, 2014).

  59. Iacovacci, J., Rahmede, C., Arenas, A. & Bianconi, G. Functional multiplex pagerank. Europhys. Lett. 116, 28004 (2016).

    Article  ADS  Google Scholar 

  60. Taylor, D., Myers, S. A., Clauset, A., Porter, M. A. & Mucha, P. J. Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 15, 537–574 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  61. Radicchi, F. & Arenas, A. Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013).

    Article  Google Scholar 

  62. de Arruda, G. F., Cozzo, E., Moreno, Y. & Rodrigues, F. A. On degree-degree correlations in multilayer networks. Phys. D Nonlinear Phenom. 323, 5–11 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Lee, K.-M., Kim, J. Y., Cho, W.-k, Goh, K.-I. & Kim, I. M. Correlated multiplexity and connectivity of multiplex random networks. New J. Phys. 14, 033027 (2012).

    Article  ADS  Google Scholar 

  64. Kleineberg, K.-K., Boguñá, M., Serrano, M. Á. & Papadopoulos, F. Hidden geometric correlations in real multiplex networks. Nat. Phys. 12, 1076–1081 (2016).

    Article  Google Scholar 

  65. Nicosia, V. & Latora, V. Measuring and modeling correlations in multiplex networks. Phys. Rev. E 92, 032805 (2015).

    Article  ADS  Google Scholar 

  66. Kim, J. Y. & Goh, K.-I. I. Coevolution and correlated multiplexity in multiplex networks. Phys. Rev. Lett. 111, 058702 (2013).

    Article  ADS  Google Scholar 

  67. Kleineberg, K.-K. & Helbing, D. Topological enslavement in evolutionary games on correlated multiplex networks. New J. Phys. 20, 053030 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  68. Wei, X. et al. Synchronizability of two-layer correlation networks. Chaos 31, 103124 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  69. Tang, J., Scellato, S., Musolesi, M., Mascolo, C. & Latora, V. Small-world behavior in time-varying graphs. Phys. Rev. E 81, 055101 (2010).

    Article  ADS  Google Scholar 

  70. Starnini, M., Baronchelli, A., Barrat, A. & Pastor-Satorras, R. Random walks on temporal networks. Phys. Rev. E 85, 056115 (2012).

    Article  ADS  Google Scholar 

  71. Nicosia, V. et al. Components in time-varying graphs. Chaos 22, 023101 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014).

    Article  Google Scholar 

  73. Barrat, A. et al. Empirical temporal networks of face-to-face human interactions. Eur. Phys. J. Special Topics 222, 1295–1309 (2013).

    Article  ADS  Google Scholar 

  74. Valdano, E., Ferreri, L., Poletto, C. & Colizza, V. Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015).

    Google Scholar 

  75. Rocha, L. E. & Masuda, N. Random walk centrality for temporal networks. New J. Phys. 16, 063023 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Li, A., Cornelius, S. P., Liu, Y.-Y., Wang, L. & Barabási, A.-L. The fundamental advantages of temporal networks. Science 358, 1042–1046 (2017).

    Article  ADS  Google Scholar 

  77. Holme, P. Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015).

    Article  ADS  Google Scholar 

  78. Gambuzza, L. V., Frasca, M. & Gomez-Gardenes, J. Intra-layer synchronization in multiplex networks. Europhys. Lett. 110, 20010 (2015).

    Article  ADS  Google Scholar 

  79. Jalan, S., Kachhvah, A. D. & Jeong, H. Explosive synchronization in multilayer dynamically dissimilar networks. J. Comput. Sci. 46, 101177 (2020).

    Article  MathSciNet  Google Scholar 

  80. Della Rossa, F. et al. Symmetries and cluster synchronization in multilayer networks. Nat. Commun. 11, 3179 (2020).

    Article  ADS  Google Scholar 

  81. Del Genio, C. I., Gómez-Gardeñes, J., Bonamassa, I. & Boccaletti, S. Synchronization in networks with multiple interaction layers. Sci. Adv. 2, e1601679 (2016).

    Article  ADS  Google Scholar 

  82. Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  83. Boccaletti, S. et al. Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1–94 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Boccaletti, S., Pisarchik, A. N., del Genio, C. I. & Amann, A. Synchronization (Cambridge Univ. Press, 2018).

  85. Zhang, X., Boccaletti, S., Guan, S. & Liu, Z. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015).

    Article  ADS  Google Scholar 

  86. Wu, T., Huo, S., Alfaro-Bittner, K., Boccaletti, S. & Liu, Z. Double explosive transition in the synchronization of multilayer networks. Phys. Rev. Res. 4, 033009 (2022).

    Article  Google Scholar 

  87. Perc, M. et al. Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Matamalas, J. T., Poncela-Casasnovas, J., Gómez, S. & Arenas, A. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks. Sci. Rep. 5, 9519 (2015).

    Article  ADS  Google Scholar 

  89. Battiston, F., Perc, M. & Latora, V. Determinants of public cooperation in multiplex networks. New J. Phys. 19, 073017 (2017).

    Article  ADS  Google Scholar 

  90. Guo, H. et al. The dynamics of cooperation in asymmetric sub-populations. New J. Phys. 22, 083015 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  91. de Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A. & Moreno, Y. Disease localization in multilayer networks. Phys. Rev. X 7, 011014 (2017).

    Google Scholar 

  92. Gomez, S. et al. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013).

    Article  ADS  Google Scholar 

  93. Sole-Ribalta, A. et al. Spectral properties of the Laplacian of multiplex networks. Phys. Rev. E 88, 032807 (2013).

    Article  ADS  Google Scholar 

  94. Tejedor, A., Longjas, A., Foufoula-Georgiou, E., Georgiou, T. T. & Moreno, Y. Diffusion dynamics and optimal coupling in multiplex networks with directed layers. Phys. Rev. X 8, 031071 (2018).

    Google Scholar 

  95. De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl Acad. Sci. USA 111, 8351–8356 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Bertagnolli, G. & De Domenico, M. Diffusion geometry of multiplex and interdependent systems. Phys. Rev. E 103, 042301 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  97. Lacasa, L. et al. Multiplex decomposition of non-Markovian dynamics and the hidden layer reconstruction problem. Phys. Rev. X 8, 031038 (2018).

    Google Scholar 

  98. Nicosia, V., Skardal, P. S., Arenas, A. & Latora, V. Collective phenomena emerging from the interactions between dynamical processes in multiplex networks. Phys. Rev. Lett. 118, 138302 (2017).

    Article  ADS  Google Scholar 

  99. Granell, C., Gómez, S. & Arenas, A. Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013).

    Article  ADS  Google Scholar 

  100. Lima, A., De Domenico, M., Pejovic, V. & Musolesi, M. Disease containment strategies based on mobility and information dissemination. Sci. Rep. 5, 10650 (2015).

    Article  ADS  Google Scholar 

  101. Bosetti, P. et al. Heterogeneity in social and epidemiological factors determines the risk of measles outbreaks. Proc. Natl Acad. Sci. USA 117, 30118–30125 (2020).

    Article  ADS  Google Scholar 

  102. Sanz, J., Xia, C.-Y., Meloni, S. & Moreno, Y. Dynamics of interacting diseases. Phys. Rev. X 4, 041005 (2014).

    Google Scholar 

  103. Amato, R., Kouvaris, N. E., San Miguel, M. & Díaz-Guilera, A. Opinion competition dynamics on multiplex networks. New J. Phys. 19, 123019 (2017).

    Article  ADS  Google Scholar 

  104. Gómez-Gardenes, J., Reinares, I., Arenas, A. & Floría, L. M. Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012).

    Article  ADS  Google Scholar 

  105. Amato, R., Díaz-Guilera, A. & Kleineberg, K.-K. Interplay between social influence and competitive strategical games in multiplex networks. Sci. Rep. 7, 7087 (2017).

    Article  ADS  Google Scholar 

  106. Danziger, M. M., Bonamassa, I., Boccaletti, S. & Havlin, S. Dynamic interdependence and competition in multilayer networks. Nat. Phys. 15, 178–185 (2019).

    Article  Google Scholar 

  107. Jang, S., Lee, J., Hwang, S. & Kahng, B. Ashkin-Teller model and diverse opinion phase transitions on multiplex networks. Phys. Rev. E 92, 022110 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  108. Antonioni, A. & Cardillo, A. Coevolution of synchronization and cooperation in costly networked interactions. Phys. Rev. Lett. 118, 238301 (2017).

    Article  ADS  Google Scholar 

  109. Li, X. et al. Double explosive transitions to synchronization and cooperation in intertwined dynamics and evolutionary games. New J. Phys. 22, 123026 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  110. Parshani, R., Buldyrev, S. V. & Havlin, S. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010).

    Article  ADS  Google Scholar 

  111. Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011).

    Article  ADS  Google Scholar 

  112. Radicchi, F. Driving interconnected networks to supercriticality. Phys. Rev. X 4, 021014 (2014).

    Google Scholar 

  113. Vespignani, A. Complex networks: the fragility of interdependency. Nature 464, 984–985 (2010).

    Article  ADS  Google Scholar 

  114. Bashan, A., Berezin, Y., Buldyrev, S. V. & Havlin, S. The extreme vulnerability of interdependent spatially embedded networks. Nat. Phys. 9, 667–672 (2013).

    Article  Google Scholar 

  115. Duan, D. et al. Universal behavior of cascading failures in interdependent networks. Proc. Natl Acad. Sci. USA 116, 22452–22457 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Brummitt, C. D., D’Souza, R. M. & Leicht, E. A. Suppressing cascades of load in interdependent networks. Proc. Natl Acad. Sci. USA 109, E680–E689 (2012).

    Article  ADS  Google Scholar 

  117. Son, S.-W., Grassberger, P. & Paczuski, M. Percolation transitions are not always sharpened by making networks interdependent. Phys. Rev. Lett. 107, 195702 (2011).

    Article  ADS  Google Scholar 

  118. Gross, B., Bonamassa, I. & Havlin, S. Fractal fluctuations at mixed-order transitions in interdependent networks. Phys. Rev. Lett. 129, 268301 (2022).

    Article  ADS  Google Scholar 

  119. Radicchi, F. & Bianconi, G. Redundant interdependencies boost the robustness of multiplex networks. Phys. Rev. X 7, 011013 (2017).

    Google Scholar 

  120. Cellai, D., López, E., Zhou, J., Gleeson, J. P. & Bianconi, G. Percolation in multiplex networks with overlap. Phys. Rev. E 88, 052811 (2013).

    Article  ADS  Google Scholar 

  121. Cellai, D., Dorogovtsev, S. N. & Bianconi, G. Message passing theory for percolation models on multiplex networks with link overlap. Phys. Rev. E 94, 032301 (2016).

    Article  ADS  Google Scholar 

  122. Osat, S., Faqeeh, A. & Radicchi, F. Optimal percolation on multiplex networks. Nat. Commun. 8, 1540 (2017).

    Article  ADS  Google Scholar 

  123. Santoro, A. & Nicosia, V. Optimal percolation in correlated multilayer networks with overlap. Phys. Rev. Res. 2, 033122 (2020).

    Article  Google Scholar 

  124. Majdandzic, A. et al. Multiple tipping points and optimal repairing in interacting networks. Nat. Commun. 7, 10850 (2016).

    Article  ADS  Google Scholar 

  125. Klimek, P. & Thurner, S. Triadic closure dynamics drives scaling laws in social multiplex networks. New J. Phys. 15, 063008 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. Cozzo, E. et al. Structure of triadic relations in multiplex networks. New J. Phys. 17, 073029 (2015).

    Article  ADS  MATH  Google Scholar 

  127. Bargigli, L., Di Iasio, G., Infante, L., Lillo, F. & Pierobon, F. The multiplex structure of interbank networks. Quant. Finance 15, 673–691 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  128. Wernicke, S. & Rasche, F. FANMOD: a tool for fast network motif detection. Bioinformatics 22, 1152–1153 (2006).

    Article  Google Scholar 

  129. Kovanen, L., Kaski, K., Kertész, J. & Saramäki, J. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl Acad. Sci. USA 110, 18070–18075 (2013).

    Article  ADS  Google Scholar 

  130. Kivelä, M. & Porter, M. A. Isomorphisms in multilayer networks. IEEE Trans. Network Sci. Eng. 5, 198–211 (2017).

    Article  MathSciNet  Google Scholar 

  131. Battiston, F., Nicosia, V., Chavez, M. & Latora, V. Multilayer motif analysis of brain networks. Chaos 27, 047404 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  132. Choobdar, S. et al. Assessment of network module identification across complex diseases. Nat. Methods 16, 843–852 (2019).

    Article  Google Scholar 

  133. Torreggiani, S., Mangioni, G., Puma, M. J. & Fagiolo, G. Identifying the community structure of the food-trade international multi-network. Environ. Res. Lett. 13, 054026 (2018).

    Article  ADS  Google Scholar 

  134. Bazzi, M. et al. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14, 1–41 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  135. Amelio, A., Mangioni, G. & Tagarelli, A. Modularity in multilayer networks using redundancy-based resolution and projection-based inter-layer coupling. IEEE Trans. Network Sci. Eng 7, 1198–1214 (2019).

    Article  MathSciNet  Google Scholar 

  136. De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5, 011027 (2015).

    Google Scholar 

  137. Peixoto, T. P. Inferring the mesoscale structure of layered, edge-valued and time-varying networks. Phys. Rev. E 92, 042807 (2015).

    Article  ADS  Google Scholar 

  138. De Bacco, C., Power, E. A., Larremore, D. B. & Moore, C. Community detection, link prediction and layer interdependence in multilayer networks. Phys. Rev. E 95, 042317 (2017).

    Article  ADS  Google Scholar 

  139. Bazzi, M., Jeub, L. G. S., Arenas, A., Howison, S. D. & Porter, M. A. A framework for the construction of generative models for mesoscale structure in multilayer networks. Phys. Rev. Res. 2, 023100 (2020).

    Article  Google Scholar 

  140. Gauvin, L., Panisson, A. & Cattuto, C. Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9, e86028 (2014).

    Article  ADS  Google Scholar 

  141. Taylor, D., Shai, S., Stanley, N. & Mucha, P. J. Enhanced detectability of community structure in multilayer networks through layer aggregation. Phys. Rev. Lett. 116, 228301 (2016).

    Article  ADS  Google Scholar 

  142. Taylor, D., Caceres, R. S. & Mucha, P. J. Super-resolution community detection for layer-aggregated multilayer networks. Phys. Rev. X 7, 031056 (2017).

    Google Scholar 

  143. Santoro, A. & Nicosia, V. Algorithmic complexity of multiplex networks. Phys. Rev. X 10, 021069 (2020).

    Google Scholar 

  144. Ghavasieh, A. & De Domenico, M. Enhancing transport properties in interconnected systems without altering their structure. Phys. Rev. Res. 2, 013155 (2020).

    Article  Google Scholar 

  145. Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495 (2020).

    Article  Google Scholar 

  146. Zhou, Y. et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 18, e3000970 (2020).

    Article  Google Scholar 

  147. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    Article  Google Scholar 

  148. Tomazou, M. et al. Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19. Brief. Bioinform. 22, bbab114 (2021).

    Article  Google Scholar 

  149. Montaldo, C. et al. Multi-omics approach to COVID-19: a domain-based literature review. J. Transl. Med. 19, 501 (2021).

    Article  Google Scholar 

  150. Klosik, D. F., Grimbs, A., Bornholdt, S. & Hütt, M.-T. The interdependent network of gene regulation and metabolism is robust where it needs to be. Nat. Commun. 8, 534 (2017).

    Article  ADS  Google Scholar 

  151. Liu, X. et al. Robustness and lethality in multilayer biological molecular networks. Nat. Commun. 11, 6043 (2020).

    Article  ADS  Google Scholar 

  152. Halu, A., De Domenico, M., Arenas, A. & Sharma, A. The multiplex network of human diseases. NPJ Syst. Biol. Appl. 5, 15 (2019).

    Article  Google Scholar 

  153. Battiston, F., Guillon, J., Chavez, M., Latora, V. & de Vico Fallani, F. Multiplex core-periphery organization of the human connectome. J. R. Soc. Interface 15, 20180514 (2018).

    Article  Google Scholar 

  154. Guillon, J. et al. Disrupted core-periphery structure of multimodal brain networks in Alzheimer’s disease. Network Neurosci. 3, 635–652 (2019).

    Article  Google Scholar 

  155. Shafiei, G., Baillet, S. & Misic, B. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol. 20, e3001735 (2022).

    Article  Google Scholar 

  156. Telesford, Q. K. et al. Detection of functional brain network reconfiguration during task-driven cognitive states. NeuroImage 142, 198–210 (2016).

    Article  Google Scholar 

  157. De Domenico, M., Sasai, S. & Arenas, A. Mapping multiplex hubs in human functional brain networks. Front. Neurosci. 10, 326 (2016).

    Article  Google Scholar 

  158. De Domenico, M. Multilayer modeling and analysis of human brain networks. GigaScience 6, gix004 (2017).

    Article  Google Scholar 

  159. Presigny, C. & De Vico Fallani, F. Colloquium: Multiscale modeling of brain network organization. Rev. Mod. Phys. 94, 031002 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  160. Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017).

    Article  Google Scholar 

  161. Silk, M. J., Finn, K. R., Porter, M. A. & Pinter-Wollman, N. Can multilayer networks advance animal behavior research? Trends Ecol. Evol. 33, 376–378 (2018).

    Article  Google Scholar 

  162. Finn, K. R., Silk, M. J., Porter, M. A. & Pinter-Wollman, N. The use of multilayer network analysis in animal behaviour. Animal Behav. 149, 7–22 (2019).

    Article  Google Scholar 

  163. Stella, M., Selakovic, S., Antonioni, A. & Andreazzi, C. S. Ecological multiplex interactions determine the role of species for parasite spread amplification. eLife 7, e32814 (2018).

    Article  Google Scholar 

  164. Timóteo, S., Correia, M., Rodríguez-Echeverría, S., Freitas, H. & Heleno, R. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the great rift landscapes. Nat. Commun. 9, 140 (2018).

    Article  ADS  Google Scholar 

  165. Meng, Y., Lai, Y.-C. & Grebogi, C. The fundamental benefits of multiplexity in ecological networks. J. R. Soc. Interface 19, 20220438 (2022).

    Article  Google Scholar 

  166. Liu, Q.-H. et al. Measurability of the epidemic reproduction number in data-driven contact networks. Proc. Natl Acad. Sci. USA 115, 12680–12685 (2018).

    Article  ADS  Google Scholar 

  167. Mistry, D. et al. Inferring high-resolution human mixing patterns for disease modeling. Nat. Commun. 12, 323 (2021).

    Article  ADS  Google Scholar 

  168. Soriano-Paños, D., Lotero, L., Arenas, A. & Gómez-Gardeñes, J. Spreading processes in multiplex metapopulations containing different mobility networks. Phys. Rev. X 8, 031039 (2018).

    Google Scholar 

  169. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  170. Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).

    Article  Google Scholar 

  171. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  Google Scholar 

  172. Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).

    Article  Google Scholar 

  173. Boguñá, M. et al. Network geometry. Nat. Rev. Phys 3, 114–135 (2021).

    Article  Google Scholar 

  174. Sanhedrai, H. et al. Reviving a failed network through microscopic interventions. Nat. Phys. 18, 338–349 (2022).

    Article  Google Scholar 

  175. Barabási, A.-L. Network medicine—from obesity to the `diseasome'. N. Engl. J. Med. 357, 404–407 (2007).

    Article  Google Scholar 

  176. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  Google Scholar 

  177. Greene, J. A. & Loscalzo, J. Putting the patient back together-social medicine, network medicine, and the limits of reductionism. N. Engl. J. Med. 377, 2493–2499 (2017).

    Article  Google Scholar 

  178. Lee, L. Y.-H. & Loscalzo, J. Network medicine in pathobiology. Am. J. Pathol. 189, 1311–1326 (2019).

    Article  Google Scholar 

  179. Bonamassa, I. et al. Interdependent superconducting networks. Nat. Phys. https://doi.org/10.1038/s41567-023-02029-z (2023).

  180. Radicchi, F. Percolation in real interdependent networks. Nat. Phys. 11, 597–602 (2015).

    Article  Google Scholar 

  181. De Domenico, M., Porter, M. A. & Arenas, A. MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Networks 3, 159–176 (2015).

    Article  Google Scholar 

  182. De Domenico, M. Multilayer Networks Illustrated (2020); https://doi.org/10.17605/OSF.IO/GY53K

  183. Yugi, K., Kubota, H., Hatano, A. & Kuroda, S. Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol. 34, 276–290 (2016).

    Article  Google Scholar 

  184. Stukalov, A. et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature 594, 246–252 (2021).

    Article  ADS  Google Scholar 

  185. Ghavasieh, A., Bontorin, S., Artime, O., Verstraete, N. & De Domenico, M. Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections. Commun. Phys. 4, 83 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

M.D.D. acknowledges partial financial support from the Human Frontier Science Program Organization (HFSP ref. RGY0064/2022), from the University of Padua (PRD-BIRD 2022), from the INFN grant “LINCOLN” and from the EU funding within the MUR PNRR “National Center for HPC, BIG DATA AND QUANTUM COMPUTING” (project no. CN00000013 CN1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manlio De Domenico.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Physics thanks Francisco Rodrigues and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 19, 1247–1262 (2023). https://doi.org/10.1038/s41567-023-02132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02132-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing