Abstract
In recent years, an increasingly large variety of molecular species have been successfully cooled to low energies, and innovative techniques continue to emerge to reach ever more precise control of molecular motion. In this Review, we focus on two widely employed cooling techniques that have brought molecular gases into the quantum regime: association of ultracold atoms into quantum gases of molecules and direct laser cooling of molecules. These advances have brought into reality the capability to prepare and manipulate both internal and external states of molecules on a quantum mechanical level, opening the field of cold molecules to a wide range of scientific explorations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
13 June 2024
In the version of the article initially published, refs. 9, 20, 23 and 39 were missing DOIs which have now been added to the HTML and PDF versions of the article.
References
Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).
Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012â5061 (2008).
Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002â1010 (2017).
Di Rosa, M. D. Laser-cooling molecules. Eur. Phys. J. D 31, 395â402 (2004).
Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).
Leung, K. H. et al. Terahertz vibrational molecular clock with systematic uncertainty at the 10â14 level. Phys. Rev. X 13, 011047 (2023).
Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111â1115 (2019).
Bjork, B. J. et al. Direct frequency comb measurement of ODâ+âCOâââDOCO kinetics. Science 354, 444â448 (2016).
Karman, T., Tomza, M. & Perez-Rios, J. Ultracold chemistry as a testbed for few-body physics. Nat. Phys. https://doi.org/10.1038/s41567-024-02467-3 (2024).
Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49â54 (2019).
Liu, L. R. et al. Ergodicity breaking in rapidly rotating C60 fullerenes. Science 381, 778â783 (2023).
Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366â1369 (2020).
Park, J. J., Lu, Y.-K., Jamison, A. O., Tscherbul, T. V. & Ketterle, W. A Feshbach resonance in collisions between triplet ground-state molecules. Nature 614, 54â58 (2023).
Yang, H. et al. Creation of an ultracold gas of triatomic molecules from an atomâdiatomic molecule mixture. Science 378, 1009â1013 (2022).
Zhang, Z., Nagata, S., Yao, K.-X. & Chin, C. Many-body chemical reactions in a quantum degenerate gas. Nat. Phys. 19, 1466â1470 (2023).
Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521â525 (2013).
Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).
Li, J.-R. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70â74 (2023).
Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64â69 (2023).
Cornish, S. L., Tarbutt, M. R. & Hazzard, K. R. A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02453-9 (2024).
ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 562, 355â360 (2018).
Roussy, T. S. et al. An improved bound on the electronâs electric dipole moment. Science 381, 46â50 (2023).
DeMille, D., Hutzler, N. R. Rey, A.-M. & Zelevinsky, T. Quantum sensing and metrology for fundamental physics with molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02499-9 (2024).
Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830â6838 (2018).
Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).
Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143â1147 (2023).
Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138â1143 (2023).
Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl Acad. Sci. USA 118, 2105063118 (2021).
Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803â4827 (2012).
Segev, Y. et al. Molecular beam brightening by shock-wave suppression. Sci. Adv. 3, 1602258 (2017).
Wu, H. et al. Enhancing radical molecular beams by skimmer cooling. Phys. Chem. Chem. Phys. 20, 11615â11621 (2018).
van de Meerakker, S. Y. T., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828â4878 (2012).
Reens, D., Wu, H., Langen, T. & Ye, J. Controlling spin flips of molecules in an electromagnetic trap. Phys. Rev. A 96, 63420 (2017).
Segev, Y. et al. Collisions between cold molecules in a superconducting magnetic trap. Nature 572, 189â193 (2019).
Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234â238 (2012).
Vogels, S. N. et al. Imaging resonances in low-energy NO-He inelastic collisions. Science 350, 787â790 (2015).
Wu, X. et al. A cryofuge for cold-collision experiments with slow polar molecules. Science 358, 645â648 (2017).
Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570â573 (2012).
DeiÃ, M., Willitsch, S. & Hecker-Denschlag, J. Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nat. Phys. https://doi.org/10.1038/s41567-024-02440-0 (2024).
Gadway, B. & Yan, B. Strongly interacting ultracold polar molecules. J. Phys. B 49, 152002 (2016).
Moses, S. A., Covey, J. P., Miecnikowski, M. T., Jin, D. S. & Ye, J. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13â20 (2017).
Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311â1361 (2006).
Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231â235 (2008).
Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062â1066 (2008).
Aikawa, K. et al. Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys. Rev. Lett. 105, 203001 (2010).
Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).
Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).
Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).
Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).
Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).
Voges, K. K. et al. Ultracold gas of bosonic 23Na39K ground-state molecules. Phys. Rev. Lett. 125, 083401 (2020).
Stevenson, I. et al. Ultracold gas of dipolar NaCs ground state molecules. Phys. Rev. Lett. 130, 113002 (2023).
Cairncross, W. B. et al. Assembly of a Rovibrational Ground State Molecule in an Optical Tweezer. Phys. Rev. Lett. 126, 123402 (2021).
Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265â270 (2010).
Barbé, V. et al. Observation of Feshbach resonances between alkali and closed-shell atoms. Nat. Phys. 14, 881â884 (2018).
Deiglmayr, J. et al. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133004 (2008).
Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).
Frye, M. D., Cornish, S. L. & Hutson, J. M. Prospects of forming high-spin polar molecules from ultracold atoms. Phys. Rev. X 10, 041005 (2020).
Schäfer, F., Mizukami, N. & Takahashi, Y. Feshbach resonances of large-mass-imbalance ErâLi mixtures. Phys. Rev. A 105, 012816 (2022).
Marco, L. D. et al. A degenerate Fermi gas of polar molecules. Science 363, 853â856 (2019).
Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239â243 (2020).
Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677â681 (2022).
Duda, M. et al. Transition from a polaronic condensate to a degenerate Fermi gas of heteronuclear molecules. Nat. Phys. 19, 720â725 (2023).
Cao, J. et al. Preparation of a quantum degenerate mixture of 23Na40K molecules and 40K atoms. Phys. Rev. A 107, 013307 (2023).
Bigagli, N. et al. Observation of BoseâEinstein condensation of dipolar molecules. Preprint at https://arxiv.org/abs/2312.10965 (2023).
Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900â903 (2018).
Zhang, J. T. et al. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124, 253401 (2020).
Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).
Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassiumârubidium molecules. Science 327, 853â857 (2010).
Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).
Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372â375 (2017).
Kotochigova, S. & DeMille, D. Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules. Phys. Rev. A 82, 063421 (2010).
Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).
Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299â1303 (2022).
Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356â376 (2018).
McCarron, D. Laser cooling and trapping molecules. J. Phys. B 51, 212001 (2018).
Fitch, N. J. & Tarbutt, M. R. in Advances in Atomic, Molecular, and Optical Physics Vol. 70 (eds Dimauro, L. F. et al) 157â262 (Academic Press, 2021).
Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286â289 (2014).
Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173â1176 (2017).
Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).
Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).
Yeo, M. et al. Rotational state microwave mixing for laser cooling of complex diatomic molecules. Phys. Rev. Lett. 114, 223003 (2015).
Ellis, A. M. Main group metalâligand interactions in small molecules: new insights from laser spectroscopy. Int. Rev. Phys. Chem. 20, 551â590 (2001).
Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).
Collopy, A. L., Hummon, M. T., Yeo, M., Yan, B. & Ye, J. Prospects for a narrow line MOT in YO. New J. Phys. 17, 55008 (2015).
Isaev, T. A. & Berger, R. Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts. Phys. Rev. Lett. 116, 063006 (2016).
Augenbraun, B. L. et al. Direct laser cooling of polyatomic molecules. Adv. At. Mol. Opt. Phys. 72, 89â182 (2023).
Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).
Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70â74 (2022).
Ivanov, M. V., Bangerter, F. H., Wójcik, P. & Krylov, A. I. Toward ultracold organic chemistry: prospects of laser cooling large organic molecules. J. Phys. Chem. Lett. 11, 6670â6676 (2020).
Zhu, G.-Z. et al. Functionalizing aromatic compounds with optical cycling centres. Nat. Chem. 14, 995â999 (2022).
Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).
Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).
Maison, D. E., Flambaum, V. V., Hutzler, N. R. & Skripnikov, L. V. Electronic structure of the ytterbium monohydroxide molecule to search for axionlike particles. Phys. Rev. A 103, 022813 (2021).
Kogel, F., Rockenhäuser, M., Albrecht, R. & Langen, T. A laser cooling scheme for precision measurements using fermionic barium monofluoride (137Ba19F) molecules. New J. Phys. 23, 095003 (2021).
Zeng, Y. et al. Optical cycling in polyatomic molecules with complex hyperfine structure. Phys. Rev. A 108, 012813 (2023).
Tarbutt, M. R. Magneto-optical trapping forces for atoms and molecules with complex level structures. New J. Phys. 17, 015007 (2015).
Devlin, J. A. & Tarbutt, M. R. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys. 18, 123017 (2016).
Cheuk, L. W. et al. Î-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).
Shaw, J. C., Schnaubelt, J. C. & McCarron, D. J. Resonance Raman optical cycling for high-fidelity fluorescence detection of molecules. Phys. Rev. Res. 3, 042041 (2021).
Rockenhäuser, M., Kogel, F., Pultinevicius, E. & Langen, T. Absorption spectroscopy for laser cooling and high-fidelity detection of barium monofluoride molecules. Phys. Rev. A 108, 062812 (2023).
Truppe, S. et al. A buffer gas beam source for short, intense and slow molecular pulses. J. Mod. Opt. 65, 648â656 (2018).
Barry, J. F., Shuman, E. S., Norrgard, E. B. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).
Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).
Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).
Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).
McCarron, D. J., Steinecker, M. H., Zhu, Y. & DeMille, D. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121, 013202 (2018).
Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890â893 (2018).
Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).
Wu, Y., Burau, J. J., Mehling, K., Ye, J. & Ding, S. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127, 263201 (2021).
Langin, T. K., Jorapur, V., Zhu, Y., Wang, Q. & DeMille, D. Polarization enhanced deep optical dipole trapping of Î-cooled polar molecules. Phys. Rev. Lett. 127, 163201 (2021).
Burau, J. J., Aggarwal, P., Mehling, K. & Ye, J. Blue-detuned magneto-optical trap of molecules. Phys. Rev. Lett. 130, 193401 (2023).
Fitch, N. J. & Tarbutt, M. R. Principles and design of a ZeemanâSisyphus decelerator for molecular beams. ChemPhysChem 17, 3609â3623 (2016).
Petzold, M., Kaebert, P., Gersema, P., Siercke, M. & Ospelkaus, S. A Zeeman slower for diatomic molecules. New J. Phys. 20, 042001 (2018).
Augenbraun, B. L. et al. ZeemanâSsisyphus deceleration of molecular beams. Phys. Rev. Lett. 127, 263002 (2021).
Langin, T. K. & DeMille, D. Toward improved loading, cooling, and trapping of molecules in magneto-optical traps. New J. Phys. 25, 043005 (2023).
Jadbabaie, A., Pilgram, N. H., KÅos, J., Kotochigova, S. & Hutzler, N. R. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22, 022002 (2020).
Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197â200 (2020).
Jurgilas, S. et al. Collisions between ultracold molecules and atoms in a magnetic trap. Phys. Rev. Lett. 126, 153401 (2021).
Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156â1158 (2019).
Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125, 43401 (2020).
Aldegunde, J., Rivington, B. A., Å»uchowski, P. S. & Hutson, J. M. Hyperfine energy levels of alkaliâmetal dimers: ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008).
Guo, M., Ye, X., He, J., Quéméner, G. & Wang, D. High-resolution internal state control of ultracold 23Na87Rb molecules. Phys. Rev. A 97, 020501 (2018).
Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).
Will, S. A., Park, J. W., Yan, Z. Z., Loh, H. & Zwierlein, M. W. Coherent microwave control of ultracold 23Na40K molecules. Phys. Rev. Lett. 116, 225306 (2016).
Gregory, P. D., Aldegunde, J., Hutson, J. M. & Cornish, S. L. Controlling the rotational and hyperfine state of ultracold 87Rb133Cs molecules. Phys. Rev. A 94, 041403 (2016).
Blackmore, J. A., Gregory, P. D., Bromley, S. L. & Cornish, S. L. Coherent manipulation of the internal state of ultracold 87Rb133Cs molecules with multiple microwave fields. Phys. Chem. Chem. Phys. 22, 27529 (2020).
Ye, X., Guo, M., González-MartÃnez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, 0083 (2018).
Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).
Wall, M., Hazzard, K. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Malinovskaya, S. A. & Novikova, I.) Ch. 1 (World Scientific, 2015).
Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).
SeeÃelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).
Blackmore, J. A. et al. Controlling the ac Stark effect of RbCs with dc electric and magnetic fields. Phys. Rev. A 102, 053316 (2020).
Bause, R. et al. Tune-out and magic wavelengths for ground-state 23Na40K molecules. Phys. Rev. Lett. 125, 023201 (2020).
He, J. et al. Characterization of the lowest electronically excited-state ro-vibrational level of 23Na87Rb. New J. Phys. 23, 115003 (2021).
Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. https://doi.org/10.1038/s41567-023-02328-5 (2024).
Tscherbul, T. V., Ye, J. & Rey, A. M. Robust nuclear spin entanglement via dipolar interactions in polar molecules. Phys. Rev. Lett. 130, 143002 (2023).
Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149â1153 (2021).
Lin, J., He, J., Jin, M., Chen, G. & Wang, D. Seconds-scale coherence on nuclear spin transitions of ultracold polar molecules in 3D optical lattices. Phys. Rev. Lett. 128, 223201 (2022).
Böttcher, F. et al. New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Prog. Phys. 84, 012403 (2020).
Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2023).
Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound dipolar droplets and supersolids in molecular BoseâEinstein condensates. Phys. Rev. Res. 4, 013235 (2022).
Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).
Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).
Avdeenkov, A. V., Kajita, M. & Bohn, J. L. Suppression of inelastic collisions of polar 1Σ state molecules in an electrostatic field. Phys. Rev. A 73, 022707 (2006).
Gorshkov, A. V. et al. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008).
Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).
Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).
Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324â1328 (2010).
de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502â507 (2011).
Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).
Guo, M. et al. Dipolar collisions of ultracold ground-state bosonic molecules. Phys. Rev. X 8, 041044 (2018).
Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).
Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132â1136 (2020).
Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).
Gersema, P. et al. Probing photoinduced two-body loss of ultracold nonreactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett. 127, 163401 (2021).
Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324â1327 (2020).
Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144â1148 (2021).
Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, abg9502 (2021).
Chen, X.-Y. et al. Field-linked resonances of polar molecules. Nature 614, 59â63 (2023).
Quéméner, G., Bohn, J. L. & Croft, J. F. E. Electroassociation of ultracold dipolar molecules into tetramer field-linked states. Phys. Rev. Lett. 131, 043402 (2023).
Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261â264 (2019).
Son, H. et al. Control of reactive collisions by quantum interference. Science 375, 1006â1010 (2022).
Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579â1584 (2023).
Lin, J. et al. Microwave shielding of bosonic NaRb molecules. Phys. Rev. X 13, 031032 (2023).
Anderegg, L. Ultracold Molecules in Optical Arrays: from Laser Cooling to Molecular Collisions. PhD dissertation, Harvard Univ. (2019).
Acknowledgements
We thank P. Aggarwal, B. Augenbraun, L. Liu and A. M. Rey for comments and suggestions on the paper. T.L. acknowledges support from Carl Zeiss Foundation, the RiSC programme of the Ministry of Science, Research and Arts Baden-Württemberg, and the European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation programme (grant agreement no. 949431). G.V. acknowledges support from the Alexander von Humboldt Foundation and the European Union (ERC, LIRICO 101115996). D.W. is supported by Hong Kong RGC General Research Fund (grants no. 14301818 and no. 14301119) and Collaborative Research Fund (grant no. C6009-20GF). J.Y. acknowledges support from ARO and AFOSR MRUI, and NIST.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Langen, T., Valtolina, G., Wang, D. et al. Quantum state manipulation and cooling of ultracold molecules. Nat. Phys. 20, 702â712 (2024). https://doi.org/10.1038/s41567-024-02423-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-024-02423-1
This article is cited by
-
Cold trapped molecular ions and hybrid platforms for ions and neutral particles
Nature Physics (2024)
-
Ultracold molecules that interact from afar form elusive quantum state
Nature (2024)
-
Quantum sensing and metrology for fundamental physics with molecules
Nature Physics (2024)
-
Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules
Nature (2024)
-
Quantum mixtures of ultracold gases of neutral atoms
Nature Reviews Physics (2024)