Abstract
Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart â this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.
Key points
-
The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between the myosin ATPase cycle and the macroscopic cardiac cycle.
-
Only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure.
-
The balance between the number of active motors and the molecular parameters of the myosin ATPase cycle enables the healthy heart to work at maximum efficiency.
-
Genetic variants associated with inherited heart disease disrupt that balance, and restoring the balance might be a useful end point in the development of novel therapies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bottinelli, R. & Reggiani, C. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73, 195â262 (2000).
Stehle, R. & Iorga, B. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J. Mol. Cell Cardiol. 48, 843â850 (2010).
Kawana, M., Spudich, J. A. & Ruppel, K. M. Hypertrophic cardiomyopathy: mutations to mechanisms to therapies. Front. Physiol. 13, 975076 (2022).
Keyt, L. K. et al. Thin filament cardiomyopathies: a review of genetics, disease mechanisms, and emerging therapeutics. Front. Cardiovasc. Med. 9, 972301 (2022).
Lehman, S. J., Crocini, C. & Leinwand, L. A. Targeting the sarcomere in inherited cardiomyopathies. Nat. Rev. Cardiol. 19, 353â363 (2022).
Nag, S., Gollapudi, S. K., Del Rio, C. L., Spudich, J. A. & McDowell, R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: from a motor protein to patients. Sci. Adv. 9, eabo7622 (2023).
Walklate, J. et al. Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol. Life Sci. 78, 7309â7337 (2021).
Sonnenblick, E. H. Correlation of myocardial ultrastructure and function. Circulation 38, 29â44 (1968).
LeWinter, M. M. & Granzier, H. Cardiac titin: a multifunctional giant. Circulation 121, 2137â2145 (2010).
Squire, J. M. The Structural Basis of Muscle Contraction (Plenum Press, 1981).
Katz, A. M. Physiology of the Heart 5th edn (Lippincott Williams & Wilkins, 2011).
Buckberg, G. D., Hoffman, J. I., Coghlan, H. C. & Nanda, N. C. Ventricular structure-function relations in health and disease: part I. The normal heart. Eur. J. Cardiothorac. Surg. 47, 587â601 (2015).
Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J. 9, 189â208 (1969).
Zhong, L., Ghista, D. N. & Tan, R. S. Left ventricular wall stress compendium. Comput. Methods Biomech. Biomed. Eng. 15, 1015â1041 (2012).
Chirinos, J. A. et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension 61, 296â303 (2013).
Gu, H. et al. Reduced first-phase ejection fraction and sustained myocardial wall stress in hypertensive patients with diastolic dysfunction: a manifestation of impaired shortening deactivation that links systolic to diastolic dysfunction and preserves systolic ejection fraction. Hypertension 69, 633â640 (2017).
Brunello, E. et al. Myosin filament-based regulation of the dynamics of contraction in heart muscle. Proc. Natl Acad. Sci. USA 117, 8177â8186 (2020).
Sonnenblick, E. H., Parmley, W. W., Buccino, R. A. & Spann, J. F. Jr. Maximum force development in cardiac muscle. Nature 219, 1056â1058 (1968).
Hodt, A. et al. Regional LV deformation in healthy individuals during isovolumetric contraction and ejection phases assessed by 2D speckle tracking echocardiography. Clin. Physiol. Funct. Imaging 32, 372â379 (2012).
Rodriguez, E. K. et al. A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am. J. Physiol. 263, H293âH306 (1992).
Kobirumaki-Shimozawa, F. et al. Nano-imaging of the beating mouse heart in vivo: importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. J. Gen. Physiol. 147, 53â62 (2016).
Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198â205 (2002).
Tobacman, L. S. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58, 447â481 (1996).
Yamada, Y., Namba, K. & Fujii, T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 11, 153 (2020).
Risi, C. M. et al. Troponin structural dynamics in the native cardiac thin filament revealed by cryo electron microscopy. J. Mol. Biol. 436, 168498 (2024).
Maier, L. S. et al. Ca2+ handling in isolated human atrial myocardium. Am. J. Physiol. Heart Circ. Physiol. 279, H952âH958 (2000).
Pieske, B. et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J. Clin. Invest. 98, 764â776 (1996).
Todaka, K., Ogino, K., Gu, A. & Burkhoff, D. Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine hearts. Am. J. Physiol. 274, H990â1000 (1998).
MacGowan, G. A., Kirk, J. A., Evans, C. & Shroff, S. G. Pressure-calcium relationships in perfused mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 290, H2614âH2624 (2006).
Janssen, P. M. & de Tombe, P. P. Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am. J. Physiol. 272, H1892âH1897 (1997).
Monasky, M. M., Varian, K. D., Davis, J. P. & Janssen, P. M. Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium. Pflug. Arch. Eur. J. Physiol. 456, 267â276 (2008).
Mashali, M. A. et al. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J. Mol. Cell Cardiol. 156, 7â19 (2021).
Caremani, M. et al. Size and speed of the working stroke of cardiac myosin in situ. Proc. Natl Acad. Sci. USA 113, 3675â3680 (2016).
Daniels, M., Noble, M. I., ter Keurs, H. E. & Wohlfart, B. Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J. Physiol. 355, 367â381 (1984).
Zoghbi, M. E., Woodhead, J. L., Craig, R. & Padrón, R. Helical order in tarantula thick filaments requires the âclosedâ conformation of the myosin head. J. Mol. Biol. 342, 1223â1236 (2004).
Al-Khayat, H. A., Kensler, R. W., Squire, J. M., Marston, S. B. & Morris, E. P. Atomic model of the human cardiac muscle myosin filament. Proc. Natl Acad. Sci. USA 110, 318â323 (2013).
Zoghbi, M. E., Woodhead, J. L., Moss, R. L. & Craig, R. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc. Natl Acad. Sci. USA 105, 2386â2390 (2008).
Pfuhl, M. & Gautel, M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J. Muscle Res. Cell Motil. 33, 83â94 (2012).
Dutta, D., Nguyen, V., Campbell, K. S., Padrón, R. & Craig, R. Cryo-EM structure of the human cardiac myosin filament. Nature 623, 853â862 (2023).
Tamborrini, D. et al. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 623, 863â871 (2023).
Stewart, M. A., Franks-Skiba, K., Chen, S. & Cooke, R. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc. Natl Acad. Sci. USA 107, 430â435 (2010).
Hooijman, P., Stewart, M. A. & Cooke, R. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100, 1969â1976 (2011).
Chu, S., Muretta, J. M. & Thomas, D. D. Direct detection of the myosin super-relaxed state and interacting-heads motif in solution. J. Biol. Chem. 297, 101157 (2021).
Mohran, S. et al. The biochemically defined super relaxed state of myosin-A paradox. J. Biol. Chem. 300, 105565 (2023).
Reconditi, M. et al. Myosin filament activation in the heart is tuned to the mechanical task. Proc. Natl Acad. Sci. USA 114, 3240â3245 (2017).
Ait-Mou, Y. et al. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc. Natl Acad. Sci. USA 113, 2306â2311 (2016).
Brunello, E. & Fusi, L. Regulating striated muscle contraction: through thick and thin. Annu. Rev. Physiol. 86, 255â275 (2024).
Sequeira, V., Maack, C., Reil, G. H. & Reil, J. C. Exploring the connection between relaxed myosin states and the anrep effect. Circ. Res. 134, 117â134 (2024).
Linari, M. et al. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528, 276â279 (2015).
Irving, M. Regulation of contraction by the thick filaments in skeletal muscle. Biophys. J. 113, 2579â2594 (2017).
Craig, R. & Padron, R. Structural basis of the super- and hyper-relaxed states of myosin II. J. Gen. Physiol. 154, e202113012 (2022).
Mijailovich, S. M., Prodanovic, M., Poggesi, C., Geeves, M. A. & Regnier, M. Multiscale modeling of twitch contractions in cardiac trabeculae. J. Gen. Physiol. 153, e202012604 (2021).
Ma, W., Nag, S., Gong, H., Qi, L. & Irving, T. C. Cardiac myosin filaments are directly regulated by calcium. J. Gen. Physiol. 154, e202213213 (2022).
Kampourakis, T., Yan, Z., Gautel, M., Sun, Y. B. & Irving, M. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc. Natl Acad. Sci. USA 111, 18763â18768 (2014).
Kampourakis, T., Sun, Y. B. & Irving, M. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc. Natl Acad. Sci. USA 113, E3039âE3047 (2016).
Ponnam, S., Sevrieva, I., Sun, Y. B., Irving, M. & Kampourakis, T. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proc. Natl Acad. Sci. USA 116, 15485â15494 (2019).
Sevrieva, I. R. et al. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J. Biol. Chem. 299, 102767 (2023).
Rosenfeld, S. S. & Taylor, E. W. The ATPase mechanism of skeletal and smooth muscle acto-subfragment 1. J. Biol. Chem. 259, 11908â11919 (1984).
White, H. D., Belknap, B. & Webb, M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36, 11828â11836 (1997).
Dantzig, J. A., Goldman, Y. E., Millar, N. C., Lacktis, J. & Homsher, E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J. Physiol. 451, 247â278 (1992).
Geeves, M. A. & Holmes, K. C. The molecular mechanism of muscle contraction. Adv. Protein Chem. 71, 161â193 (2005).
Caremani, M., Melli, L., Dolfi, M., Lombardi, V. & Linari, M. The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site. J. Physiol. 591, 5187â5205 (2013).
Campbell, K. S., Janssen, P. M. L. & Campbell, S. G. Force-dependent recruitment from the myosin off state contributes to length-dependent activation. Biophys. J. 115, 543â553 (2018).
Marcucci, L. & Reggiani, C. Mechanosensing in myosin filament solves a 60 years old conflict in skeletal muscle modeling between high power output and slow rise in tension. Front. Physiol. 7, 427 (2016).
Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255â318 (1957).
Nyitrai, M. & Geeves, M. A. Adenosine diphosphate and strain sensitivity in myosin motors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1867â1877 (2004).
Greenberg, M. J., Arpag, G., Tuzel, E. & Ostap, E. M. A perspective on the role of myosins as mechanosensors. Biophys. J. 110, 2568â2576 (2016).
Brunello, E., Marcucci, L., Irving, M. & Fusi, L. Activation of skeletal muscle is controlled by a dual-filament mechano-sensing mechanism. Proc. Natl Acad. Sci. USA 120, e2302837120 (2023).
Deacon, J. C., Bloemink, M. J., Rezavandi, H., Geeves, M. A. & Leinwand, L. A. Erratum to: identification of functional differences between recombinant human α and β cardiac myosin motors. Cell Mol. Life Sci. 69, 4239â4255 (2012).
Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 233, 533â538 (1971).
Hill, T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol. 28, 267â340 (1974).
Piazzesi, G. et al. Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131, 784â795 (2007).
Pinzauti, F. et al. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J. Physiol. 596, 2581â2596 (2018).
Spudich, J. A. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys. J. 106, 1236â1249 (2014).
Greenberg, M. J., Shuman, H. & Ostap, E. M. Inherent force-dependent properties of β-cardiac myosin contribute to the force-velocity relationship of cardiac muscle. Biophys. J. 107, L41âL44 (2014).
Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M. & Goldman, Y. E. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 8, e49266 (2019).
Barclay, C. J. & Widen, C. Efficiency of cross-bridges and mitochondria in mouse cardiac muscle. Adv. Exp. Med. Biol. 682, 267â278 (2010).
Han, J. C., Taberner, A. J., Loiselle, D. S. & Tran, K. Cardiac efficiency and Starlingâs law of the heart. J. Physiol. 600, 4265â4285 (2022).
Suga, H. Ventricular energetics. Physiol. Rev. 70, 247â277 (1990).
de Tombe, P. P. & ter Keurs, H. E. The velocity of cardiac sarcomere shortening: mechanisms and implications. J. Muscle Res. Cell Motil. 33, 431â437 (2012).
Jacob, R., Dierberger, B. & Kissling, G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur. Heart J. 13 (Suppl. E), 7â14 (1992).
Frank, O. Zur dynamik des herzmuskels. Z. Biol. 32, 370â447 (1895).
Patterson, S. W. & Starling, E. H. On the mechanical factors which determine the output of the ventricles. J. Physiol. 48, 357â379 (1914).
ter Keurs, H. E., Rijnsburger, W. H., van Heuningen, R. & Nagelsmit, M. J. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ. Res. 46, 703â714 (1980).
de Tombe, P. P. et al. Myofilament length dependent activation. J. Mol. Cell Cardiol. 48, 851â858 (2010).
Sequeira, V. & van der Velden, J. The Frank-Starling law: a jigsaw of titin proportions. Biophys. Rev. 9, 259â267 (2017).
Allen, D. G. & Kurihara, S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 327, 79â94 (1982).
Kentish, J. C., ter Keurs, H. E., Ricciardi, L., Bucx, J. J. & Noble, M. I. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ. Res. 58, 755â768 (1986).
Zhang, X. et al. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife 6, e24081 (2017).
Wannenburg, T. et al. Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am. J. Physiol. Heart Circ. Physiol. 279, H779âH790 (2000).
Fuchs, F. & Martyn, D. A. Length-dependent Ca2+ activation in cardiac muscle: some remaining questions. J. Muscle Res. Cell Motil. 26, 199â212 (2005).
Hanft, L. M., Korte, F. S. & McDonald, K. S. Cardiac function and modulation of sarcomeric function by length. Cardiovasc. Res. 77, 627â636 (2008).
Park-Holohan, S.-J. et al. Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. Proc. Natl Acad. Sci. USA 118, e2023706118 (2021).
Kampourakis, T. & Irving, M. The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nat. Commun. 12, 5272 (2021).
Caremani, M. et al. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. J. Gen. Physiol. 151, 53â65 (2019).
Ma, W. et al. The super-relaxed state and length dependent activation in porcine myocardium. Circ. Res. 129, 617â630 (2021).
Konhilas, J. P., Irving, T. C. & de Tombe, P. P. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ. Res. 90, 59â65 (2002).
Granzier, H. & Labeit, S. Cardiac titin: an adjustable multi-functional spring. J. Physiol. 541, 335â342 (2002).
Farman, G. P. et al. Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am. J. Physiol. Heart Circ. Physiol. 300, H2155âH2160 (2011).
Rossignol, P., Hernandez, A. F., Solomon, S. D. & Zannad, F. Heart failure drug treatment. Lancet 393, 1034â1044 (2019).
Malik, F. I. et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331, 1439â1443 (2011).
Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759â769 (2020).
Voors, A. A. et al. Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial. Eur. J. Heart Fail. 22, 1649â1658 (2020).
Felker, G. M. et al. Assessment of omecamtiv mecarbil for the treatment of patients with severe heart failure: a post hoc analysis of data from the GALACTIC-HF randomized clinical trial. JAMA Cardiol. 7, 26â34 (2022).
Kampourakis, T., Zhang, X., Sun, Y. B. & Irving, M. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. J. Physiol. 596, 31â46 (2018).
Spudich, J. A. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43, 64â72 (2015).
Ashrafian, H., Redwood, C., Blair, E. & Watkins, H. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 19, 263â268 (2003).
Gwathmey, J. K., Slawsky, M. T., Hajjar, R. J., Briggs, G. M. & Morgan, J. P. Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J. Clin. Invest. 85, 1599â1613 (1990).
Layland, J. & Kentish, J. C. Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. Am. J. Physiol. 276, H9âH18 (1999).
Haizlip, K. M. et al. Dissociation of calcium transients and force development following a change in stimulation frequency in isolated rabbit myocardium. Biomed. Res. Int. 2015, 468548 (2015).
Janssen, P. M. & Periasamy, M. Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J. Mol. Cell Cardiol. 43, 523â531 (2007).
Brutsaert, D. L. & Sys, S. U. Relaxation and diastole of the heart. Physiol. Rev. 69, 1228â1315 (1989).
De Tombe, P. P. & Little, W. C. Inotropic effects of ejection are myocardial properties. Am. J. Physiol. 266, H1202âH1213 (1994).
Taberner, A. J., Han, J. C., Loiselle, D. S. & Nielsen, P. M. An innovative work-loop calorimeter for in vitro measurement of the mechanics and energetics of working cardiac trabeculae. J. Appl. Physiol. 111, 1798â1803 (2011).
Iribe, G., Helmes, M. & Kohl, P. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am. J. Physiol. Heart Circ. Physiol. 292, H1487âH1497 (2007).
Poggesi, C., Tesi, C. & Stehle, R. Sarcomeric determinants of striated muscle relaxation kinetics. Pflug. Arch. Eur. J. Physiol. 449, 505â517 (2005).
Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50â58 (1993).
Acknowledgements
The author thanks the Wellcome Trust and UK Medical Research Council for financial support, and E. Brunello, P. Chowienczyk, L. Fusi and M. Gautel (all from Kingâs College London, UK), J. Ellis (University College London, UK) and T. Kampourakis (University of Kentucky, USA) for comments on an earlier version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Reviews Cardiology thanks Corrado Poggesi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Irving, M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01063-5
Accepted:
Published:
DOI: https://doi.org/10.1038/s41569-024-01063-5