Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional control of myosin motors in the cardiac cycle

Abstract

Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart — this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.

Key points

  • The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between the myosin ATPase cycle and the macroscopic cardiac cycle.

  • Only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure.

  • The balance between the number of active motors and the molecular parameters of the myosin ATPase cycle enables the healthy heart to work at maximum efficiency.

  • Genetic variants associated with inherited heart disease disrupt that balance, and restoring the balance might be a useful end point in the development of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The sarcomere and the main protein constituents of the thin and thick filaments.
Fig. 2: The cardiac cycle at the organ level.
Fig. 3: The cardiac cycle at the filament level.
Fig. 4: The myosin motor cycle.

Similar content being viewed by others

References

  1. Bottinelli, R. & Reggiani, C. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73, 195–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Stehle, R. & Iorga, B. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J. Mol. Cell Cardiol. 48, 843–850 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Kawana, M., Spudich, J. A. & Ruppel, K. M. Hypertrophic cardiomyopathy: mutations to mechanisms to therapies. Front. Physiol. 13, 975076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keyt, L. K. et al. Thin filament cardiomyopathies: a review of genetics, disease mechanisms, and emerging therapeutics. Front. Cardiovasc. Med. 9, 972301 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lehman, S. J., Crocini, C. & Leinwand, L. A. Targeting the sarcomere in inherited cardiomyopathies. Nat. Rev. Cardiol. 19, 353–363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nag, S., Gollapudi, S. K., Del Rio, C. L., Spudich, J. A. & McDowell, R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: from a motor protein to patients. Sci. Adv. 9, eabo7622 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Walklate, J. et al. Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol. Life Sci. 78, 7309–7337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sonnenblick, E. H. Correlation of myocardial ultrastructure and function. Circulation 38, 29–44 (1968).

    Article  CAS  PubMed  Google Scholar 

  9. LeWinter, M. M. & Granzier, H. Cardiac titin: a multifunctional giant. Circulation 121, 2137–2145 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Squire, J. M. The Structural Basis of Muscle Contraction (Plenum Press, 1981).

  11. Katz, A. M. Physiology of the Heart 5th edn (Lippincott Williams & Wilkins, 2011).

  12. Buckberg, G. D., Hoffman, J. I., Coghlan, H. C. & Nanda, N. C. Ventricular structure-function relations in health and disease: part I. The normal heart. Eur. J. Cardiothorac. Surg. 47, 587–601 (2015).

    Article  PubMed  Google Scholar 

  13. Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J. 9, 189–208 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhong, L., Ghista, D. N. & Tan, R. S. Left ventricular wall stress compendium. Comput. Methods Biomech. Biomed. Eng. 15, 1015–1041 (2012).

    Article  CAS  Google Scholar 

  15. Chirinos, J. A. et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension 61, 296–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Gu, H. et al. Reduced first-phase ejection fraction and sustained myocardial wall stress in hypertensive patients with diastolic dysfunction: a manifestation of impaired shortening deactivation that links systolic to diastolic dysfunction and preserves systolic ejection fraction. Hypertension 69, 633–640 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Brunello, E. et al. Myosin filament-based regulation of the dynamics of contraction in heart muscle. Proc. Natl Acad. Sci. USA 117, 8177–8186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sonnenblick, E. H., Parmley, W. W., Buccino, R. A. & Spann, J. F. Jr. Maximum force development in cardiac muscle. Nature 219, 1056–1058 (1968).

    Article  CAS  PubMed  Google Scholar 

  19. Hodt, A. et al. Regional LV deformation in healthy individuals during isovolumetric contraction and ejection phases assessed by 2D speckle tracking echocardiography. Clin. Physiol. Funct. Imaging 32, 372–379 (2012).

    Article  PubMed  Google Scholar 

  20. Rodriguez, E. K. et al. A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am. J. Physiol. 263, H293–H306 (1992).

    CAS  PubMed  Google Scholar 

  21. Kobirumaki-Shimozawa, F. et al. Nano-imaging of the beating mouse heart in vivo: importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. J. Gen. Physiol. 147, 53–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Tobacman, L. S. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58, 447–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Yamada, Y., Namba, K. & Fujii, T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 11, 153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Risi, C. M. et al. Troponin structural dynamics in the native cardiac thin filament revealed by cryo electron microscopy. J. Mol. Biol. 436, 168498 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Maier, L. S. et al. Ca2+ handling in isolated human atrial myocardium. Am. J. Physiol. Heart Circ. Physiol. 279, H952–H958 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Pieske, B. et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J. Clin. Invest. 98, 764–776 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Todaka, K., Ogino, K., Gu, A. & Burkhoff, D. Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine hearts. Am. J. Physiol. 274, H990–1000 (1998).

    CAS  PubMed  Google Scholar 

  29. MacGowan, G. A., Kirk, J. A., Evans, C. & Shroff, S. G. Pressure-calcium relationships in perfused mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 290, H2614–H2624 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Janssen, P. M. & de Tombe, P. P. Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am. J. Physiol. 272, H1892–H1897 (1997).

    CAS  PubMed  Google Scholar 

  31. Monasky, M. M., Varian, K. D., Davis, J. P. & Janssen, P. M. Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium. Pflug. Arch. Eur. J. Physiol. 456, 267–276 (2008).

    Article  CAS  Google Scholar 

  32. Mashali, M. A. et al. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J. Mol. Cell Cardiol. 156, 7–19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caremani, M. et al. Size and speed of the working stroke of cardiac myosin in situ. Proc. Natl Acad. Sci. USA 113, 3675–3680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daniels, M., Noble, M. I., ter Keurs, H. E. & Wohlfart, B. Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J. Physiol. 355, 367–381 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zoghbi, M. E., Woodhead, J. L., Craig, R. & Padrón, R. Helical order in tarantula thick filaments requires the “closed” conformation of the myosin head. J. Mol. Biol. 342, 1223–1236 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Al-Khayat, H. A., Kensler, R. W., Squire, J. M., Marston, S. B. & Morris, E. P. Atomic model of the human cardiac muscle myosin filament. Proc. Natl Acad. Sci. USA 110, 318–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Zoghbi, M. E., Woodhead, J. L., Moss, R. L. & Craig, R. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc. Natl Acad. Sci. USA 105, 2386–2390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pfuhl, M. & Gautel, M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J. Muscle Res. Cell Motil. 33, 83–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Dutta, D., Nguyen, V., Campbell, K. S., Padrón, R. & Craig, R. Cryo-EM structure of the human cardiac myosin filament. Nature 623, 853–862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tamborrini, D. et al. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 623, 863–871 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stewart, M. A., Franks-Skiba, K., Chen, S. & Cooke, R. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc. Natl Acad. Sci. USA 107, 430–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Hooijman, P., Stewart, M. A. & Cooke, R. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100, 1969–1976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu, S., Muretta, J. M. & Thomas, D. D. Direct detection of the myosin super-relaxed state and interacting-heads motif in solution. J. Biol. Chem. 297, 101157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohran, S. et al. The biochemically defined super relaxed state of myosin-A paradox. J. Biol. Chem. 300, 105565 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reconditi, M. et al. Myosin filament activation in the heart is tuned to the mechanical task. Proc. Natl Acad. Sci. USA 114, 3240–3245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ait-Mou, Y. et al. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc. Natl Acad. Sci. USA 113, 2306–2311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brunello, E. & Fusi, L. Regulating striated muscle contraction: through thick and thin. Annu. Rev. Physiol. 86, 255–275 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Sequeira, V., Maack, C., Reil, G. H. & Reil, J. C. Exploring the connection between relaxed myosin states and the anrep effect. Circ. Res. 134, 117–134 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Linari, M. et al. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528, 276–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Irving, M. Regulation of contraction by the thick filaments in skeletal muscle. Biophys. J. 113, 2579–2594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Craig, R. & Padron, R. Structural basis of the super- and hyper-relaxed states of myosin II. J. Gen. Physiol. 154, e202113012 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Mijailovich, S. M., Prodanovic, M., Poggesi, C., Geeves, M. A. & Regnier, M. Multiscale modeling of twitch contractions in cardiac trabeculae. J. Gen. Physiol. 153, e202012604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma, W., Nag, S., Gong, H., Qi, L. & Irving, T. C. Cardiac myosin filaments are directly regulated by calcium. J. Gen. Physiol. 154, e202213213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kampourakis, T., Yan, Z., Gautel, M., Sun, Y. B. & Irving, M. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc. Natl Acad. Sci. USA 111, 18763–18768 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kampourakis, T., Sun, Y. B. & Irving, M. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc. Natl Acad. Sci. USA 113, E3039–E3047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ponnam, S., Sevrieva, I., Sun, Y. B., Irving, M. & Kampourakis, T. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proc. Natl Acad. Sci. USA 116, 15485–15494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sevrieva, I. R. et al. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J. Biol. Chem. 299, 102767 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Rosenfeld, S. S. & Taylor, E. W. The ATPase mechanism of skeletal and smooth muscle acto-subfragment 1. J. Biol. Chem. 259, 11908–11919 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. White, H. D., Belknap, B. & Webb, M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36, 11828–11836 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Dantzig, J. A., Goldman, Y. E., Millar, N. C., Lacktis, J. & Homsher, E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J. Physiol. 451, 247–278 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Geeves, M. A. & Holmes, K. C. The molecular mechanism of muscle contraction. Adv. Protein Chem. 71, 161–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Caremani, M., Melli, L., Dolfi, M., Lombardi, V. & Linari, M. The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site. J. Physiol. 591, 5187–5205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell, K. S., Janssen, P. M. L. & Campbell, S. G. Force-dependent recruitment from the myosin off state contributes to length-dependent activation. Biophys. J. 115, 543–553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marcucci, L. & Reggiani, C. Mechanosensing in myosin filament solves a 60 years old conflict in skeletal muscle modeling between high power output and slow rise in tension. Front. Physiol. 7, 427 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).

    Article  CAS  PubMed  Google Scholar 

  66. Nyitrai, M. & Geeves, M. A. Adenosine diphosphate and strain sensitivity in myosin motors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1867–1877 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Greenberg, M. J., Arpag, G., Tuzel, E. & Ostap, E. M. A perspective on the role of myosins as mechanosensors. Biophys. J. 110, 2568–2576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brunello, E., Marcucci, L., Irving, M. & Fusi, L. Activation of skeletal muscle is controlled by a dual-filament mechano-sensing mechanism. Proc. Natl Acad. Sci. USA 120, e2302837120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deacon, J. C., Bloemink, M. J., Rezavandi, H., Geeves, M. A. & Leinwand, L. A. Erratum to: identification of functional differences between recombinant human α and β cardiac myosin motors. Cell Mol. Life Sci. 69, 4239–4255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971).

    Article  CAS  PubMed  Google Scholar 

  71. Hill, T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol. 28, 267–340 (1974).

    Article  CAS  PubMed  Google Scholar 

  72. Piazzesi, G. et al. Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131, 784–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Pinzauti, F. et al. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J. Physiol. 596, 2581–2596 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spudich, J. A. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys. J. 106, 1236–1249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greenberg, M. J., Shuman, H. & Ostap, E. M. Inherent force-dependent properties of β-cardiac myosin contribute to the force-velocity relationship of cardiac muscle. Biophys. J. 107, L41–L44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M. & Goldman, Y. E. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 8, e49266 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Barclay, C. J. & Widen, C. Efficiency of cross-bridges and mitochondria in mouse cardiac muscle. Adv. Exp. Med. Biol. 682, 267–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Han, J. C., Taberner, A. J., Loiselle, D. S. & Tran, K. Cardiac efficiency and Starling’s law of the heart. J. Physiol. 600, 4265–4285 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Suga, H. Ventricular energetics. Physiol. Rev. 70, 247–277 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. de Tombe, P. P. & ter Keurs, H. E. The velocity of cardiac sarcomere shortening: mechanisms and implications. J. Muscle Res. Cell Motil. 33, 431–437 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jacob, R., Dierberger, B. & Kissling, G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur. Heart J. 13 (Suppl. E), 7–14 (1992).

    Article  PubMed  Google Scholar 

  82. Frank, O. Zur dynamik des herzmuskels. Z. Biol. 32, 370–447 (1895).

    Google Scholar 

  83. Patterson, S. W. & Starling, E. H. On the mechanical factors which determine the output of the ventricles. J. Physiol. 48, 357–379 (1914).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. ter Keurs, H. E., Rijnsburger, W. H., van Heuningen, R. & Nagelsmit, M. J. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ. Res. 46, 703–714 (1980).

    Article  PubMed  Google Scholar 

  85. de Tombe, P. P. et al. Myofilament length dependent activation. J. Mol. Cell Cardiol. 48, 851–858 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sequeira, V. & van der Velden, J. The Frank-Starling law: a jigsaw of titin proportions. Biophys. Rev. 9, 259–267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Allen, D. G. & Kurihara, S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 327, 79–94 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kentish, J. C., ter Keurs, H. E., Ricciardi, L., Bucx, J. J. & Noble, M. I. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ. Res. 58, 755–768 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, X. et al. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife 6, e24081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wannenburg, T. et al. Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am. J. Physiol. Heart Circ. Physiol. 279, H779–H790 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Fuchs, F. & Martyn, D. A. Length-dependent Ca2+ activation in cardiac muscle: some remaining questions. J. Muscle Res. Cell Motil. 26, 199–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Hanft, L. M., Korte, F. S. & McDonald, K. S. Cardiac function and modulation of sarcomeric function by length. Cardiovasc. Res. 77, 627–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Park-Holohan, S.-J. et al. Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. Proc. Natl Acad. Sci. USA 118, e2023706118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kampourakis, T. & Irving, M. The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nat. Commun. 12, 5272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Caremani, M. et al. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. J. Gen. Physiol. 151, 53–65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, W. et al. The super-relaxed state and length dependent activation in porcine myocardium. Circ. Res. 129, 617–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Konhilas, J. P., Irving, T. C. & de Tombe, P. P. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ. Res. 90, 59–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Granzier, H. & Labeit, S. Cardiac titin: an adjustable multi-functional spring. J. Physiol. 541, 335–342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Farman, G. P. et al. Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am. J. Physiol. Heart Circ. Physiol. 300, H2155–H2160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rossignol, P., Hernandez, A. F., Solomon, S. D. & Zannad, F. Heart failure drug treatment. Lancet 393, 1034–1044 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Malik, F. I. et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331, 1439–1443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Voors, A. A. et al. Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial. Eur. J. Heart Fail. 22, 1649–1658 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Felker, G. M. et al. Assessment of omecamtiv mecarbil for the treatment of patients with severe heart failure: a post hoc analysis of data from the GALACTIC-HF randomized clinical trial. JAMA Cardiol. 7, 26–34 (2022).

    Article  PubMed  Google Scholar 

  105. Kampourakis, T., Zhang, X., Sun, Y. B. & Irving, M. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. J. Physiol. 596, 31–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Spudich, J. A. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43, 64–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ashrafian, H., Redwood, C., Blair, E. & Watkins, H. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 19, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Gwathmey, J. K., Slawsky, M. T., Hajjar, R. J., Briggs, G. M. & Morgan, J. P. Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J. Clin. Invest. 85, 1599–1613 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Layland, J. & Kentish, J. C. Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. Am. J. Physiol. 276, H9–H18 (1999).

    CAS  PubMed  Google Scholar 

  110. Haizlip, K. M. et al. Dissociation of calcium transients and force development following a change in stimulation frequency in isolated rabbit myocardium. Biomed. Res. Int. 2015, 468548 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Janssen, P. M. & Periasamy, M. Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J. Mol. Cell Cardiol. 43, 523–531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brutsaert, D. L. & Sys, S. U. Relaxation and diastole of the heart. Physiol. Rev. 69, 1228–1315 (1989).

    Article  CAS  PubMed  Google Scholar 

  113. De Tombe, P. P. & Little, W. C. Inotropic effects of ejection are myocardial properties. Am. J. Physiol. 266, H1202–H1213 (1994).

    PubMed  Google Scholar 

  114. Taberner, A. J., Han, J. C., Loiselle, D. S. & Nielsen, P. M. An innovative work-loop calorimeter for in vitro measurement of the mechanics and energetics of working cardiac trabeculae. J. Appl. Physiol. 111, 1798–1803 (2011).

    Article  PubMed  Google Scholar 

  115. Iribe, G., Helmes, M. & Kohl, P. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am. J. Physiol. Heart Circ. Physiol. 292, H1487–H1497 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Poggesi, C., Tesi, C. & Stehle, R. Sarcomeric determinants of striated muscle relaxation kinetics. Pflug. Arch. Eur. J. Physiol. 449, 505–517 (2005).

    Article  CAS  Google Scholar 

  117. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the Wellcome Trust and UK Medical Research Council for financial support, and E. Brunello, P. Chowienczyk, L. Fusi and M. Gautel (all from King’s College London, UK), J. Ellis (University College London, UK) and T. Kampourakis (University of Kentucky, USA) for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Irving.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Corrado Poggesi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irving, M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01063-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01063-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing