Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How macrophage heterogeneity affects tuberculosis disease and therapy

Abstract

Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tuberculosis granulomas are heterogeneous in both structure and disease outcome.
Fig. 2: Main features of the macrophage populations in non-infected mouse lung.
Fig. 3: Host macrophage populations in Mycobacterium tuberculosis-infected mouse lung.
Fig. 4: Differential distribution of Mycobacterium tuberculosis associated with host cell phenotype and drug susceptibility.

Similar content being viewed by others

References

  1. Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol. Rev. 264, 6–24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. Yoshida, M. et al. Complete genome sequence of Mycobacterium marinum ATCC 927(T), obtained using nanopore and illumina sequencing technologies. Genome Announc. 6, e00397–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mohan, A., Padiadpu, J., Baloni, P. & Chandra, N. Complete genome sequences of a Mycobacterium smegmatis laboratory strain (MC2 155) and isoniazid-resistant (4XR1/R2) mutant strains. Genome Announc. 3, e01520–14 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. World Health Organization. Global Tuberculosis Report 2023 (2023).

  7. Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Molhave, M. & Wejse, C. Historical review of studies on the effect of treating latent tuberculosis. Int. J. Infect. Dis. 92S, S31–S36 (2020).

    Article  PubMed  CAS  Google Scholar 

  9. Farhat, M. et al. Drug-resistant tuberculosis: a persistent global health concern. Nat. Rev. Microbiol. 22, 617–635 (2024).

    Article  PubMed  CAS  Google Scholar 

  10. Liebenberg, D., Gordhan, B. G. & Kana, B. D. Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management. Front. Cell Infect. Microbiol. 12, 943545 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Salari, N. et al. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis. Infect. Dis. Poverty 12, 57 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Setiabudiawan, T. P. et al. Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: a historical perspective. Med. 3, 6–24 (2022).

    Article  PubMed  CAS  Google Scholar 

  13. Andersen, P. & Doherty, T. M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3, 656–662 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. World Health, O. BCG vaccine: WHO position paper, February 2018 — recommendations. Vaccine 36, 3408–3410 (2018).

    Article  Google Scholar 

  15. Ayers, T. et al. Comparison of tuberculin skin testing and interferon-γ release assays in predicting tuberculosis disease. JAMA Netw. Open. 7, e244769 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peetluk, L. S. et al. Systematic review of prediction models for pulmonary tuberculosis treatment outcomes in adults. BMJ Open. 11, e044687 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saunders, M. J. et al. A score to predict and stratify risk of tuberculosis in adult contacts of tuberculosis index cases: a prospective derivation and external validation cohort study. Lancet Infect. Dis. 17, 1190–1199 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bloom, B. R. A half-century of research on tuberculosis: successes and challenges. J. Exp. Med. 220, e20230859 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cadena, A. M., Fortune, S. M. & Flynn, J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Urbanowski, M. E., Ordonez, A. A., Ruiz-Bedoya, C. A., Jain, S. K. & Bishai, W. R. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect. Dis. 20, e117–e128 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cohen, S. B., Gern, B. H. & Urdahl, K. B. The tuberculous granuloma and preexisting immunity. Annu. Rev. Immunol. 40, 589–614 (2022).

    Article  PubMed  CAS  Google Scholar 

  23. Hunter, R. & Actor, J. The pathogenesis of post-primary tuberculosis. A game changer for vaccine development. Tuberculosis 116S, S114–S117 (2019).

    Article  PubMed  Google Scholar 

  24. Hunter, R. L. The pathogenesis of tuberculosis: the early infiltrate of post-primary (adult pulmonary) tuberculosis: a distinct disease entity. Front. Immunol. 9, 2108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wells, G. et al. Micro-computed tomography analysis of the human tuberculous lung reveals remarkable heterogeneity in three-dimensional granuloma morphology. Am. J. Respir. Crit. Care Med. 204, 583–595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Houben, R. M. & Dodd, P. J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13, e1002152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Behr, M. A., Edelstein, P. H. & Ramakrishnan, L. Rethinking the burden of latent tuberculosis to reprioritize research. Nat. Microbiol. 9, 1157–1158 (2024).

    Article  PubMed  CAS  Google Scholar 

  28. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    PubMed  PubMed Central  Google Scholar 

  29. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    Article  PubMed  CAS  Google Scholar 

  30. Gibbings, S. L. et al. Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell Mol. Biol. 57, 66–76 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

    Article  PubMed  CAS  Google Scholar 

  32. Schyns, J. et al. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nat. Commun. 10, 3964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Trapnell, B. C., Whitsett, J. A. & Nakata, K. Pulmonary alveolar proteinosis. N. Engl. J. Med. 349, 2527–2539 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  PubMed  CAS  Google Scholar 

  36. Pisu, D., Johnston, L., Mattila, J. T. & Russell, D. G. The frequency of CD38+ alveolar macrophages correlates with early control of M. tuberculosis in the murine lung. Nat. Commun. 15, 8522 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pisu, D. et al. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J. Exp. Med. 218, e20210615 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Aegerter, H., Lambrecht, B. N. & Jakubzick, C. V. Biology of lung macrophages in health and disease. Immunity 55, 1564–1580 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Srivastava, S., Ernst, J. D. & Desvignes, L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol. Rev. 262, 179–192 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rothchild, A. C. et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. Sci. Immunol. 4, eaaw6693 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mendonca, L. E. et al. Human alveolar macrophage metabolism is compromised during Mycobacterium tuberculosis infection. Front. Immunol. 13, 1044592 (2022).

    Article  PubMed  CAS  Google Scholar 

  43. Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Marino, S. et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect. Immun. 83, 324–338 (2015).

    Article  PubMed  Google Scholar 

  45. Maertzdorf, J. et al. Mycobacterium tuberculosis invasion of the human lung: first contact. Front. Immunol. 9, 1346 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lin, P. L. et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 74, 3790–3803 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lin, P. L. et al. Radiologic responses in cynomolgus macaques for assessing tuberculosis chemotherapy regimens. Antimicrob. Agents Chemother. 57, 4237–4244 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Antonelli, L. R. et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest. 120, 1674–1682 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Samstein, M. et al. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2, e01086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kotov, D. I. et al. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. Cell 186, 5536–5553 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ji, D. X. et al. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. Elife 10, e67290 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pisu, D., Huang, L., Grenier, J. K. & Russell, D. G. Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Rep. 30, 335–350 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Abramovitch, R. B., Rohde, K. H., Hsu, F. F. & Russell, D. G. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol. Microbiol. 80, 678–694 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sukumar, N., Tan, S., Aldridge, B. B. & Russell, D. G. Exploitation of Mycobacterium tuberculosis reporter strains to probe the impact of vaccination at sites of infection. PLoS Pathog. 10, e1004394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tan, S., Sukumar, N., Abramovitch, R. B., Parish, T. & Russell, D. G. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog. 9, e1003282 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pandey, R. & Rodriguez, G. M. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect. Immun. 80, 3650–3659 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Reddy, P. V., Puri, R. V., Khera, A. & Tyagi, A. K. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J. Bacteriol. 194, 567–575 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Olakanmi, O., Britigan, B. E. & Schlesinger, L. S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect. Immun. 68, 5619–5627 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Olakanmi, O. et al. Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob. Agents Chemother. 57, 6074–6080 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Theriault, M. E. et al. Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Commun. Biol. 5, 685 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kochan, I. The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr. Top. Microbiol. Immunol. 60, 1–30 (1973).

    Article  PubMed  CAS  Google Scholar 

  64. Mai, D. et al. Exposure to Mycobacterium remodels alveolar macrophages and the early innate response to Mycobacterium tuberculosis infection. PLoS Pathog. 20, e1011871 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. North, R. J. & Jung, Y. J. Immunity to tuberculosis. Annu. Rev. Immunol. 22, 599–623 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. Ashenafi, S. & Brighenti, S. Reinventing the human tuberculosis (TB) granuloma: learning from the cancer field. Front. Immunol. 13, 1059725 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Flynn, J. L. & Chan, J. Immune cell interactions in tuberculosis. Cell 185, 4682–4702 (2022).

    Article  PubMed  CAS  Google Scholar 

  68. McCaffrey, E. F. et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol. 23, 318–329 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lai, R., Williams, T., Rakib, T., Lee, J. & Behar, S. M. Heterogeneity in lung macrophage control of Mycobacterium tuberculosis is modulated by T cells. Nat. Commun. 15, 5710 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Esaulova, E. et al. The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host Microbe 29, 165–178 (2021).

    Article  PubMed  CAS  Google Scholar 

  71. Gideon, H. P. et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 55, 827–846 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. She, Y. et al. Elevated expression of macrophage MERTK exhibits profibrotic effects and results in defective regulation of efferocytosis function in pulmonary fibrosis. Respir. Res. 24, 118 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chang, D., Sharma, L. & Dela Cruz, C. S. Chitotriosidase: a marker and modulator of lung disease. Eur. Respir. Rev. 29, 190143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Y. J. et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Huang, L., Nazarova, E. V. & Russell, D. G. Mycobacterium tuberculosis: bacterial fitness within the host macrophage. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.BAI-0001-2019 (2019).

  76. Amaral, E. P. et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 216, 556–570 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Amaral, E. P. et al. BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility. Nat. Microbiol. 9, 120–135 (2024).

    Article  PubMed  CAS  Google Scholar 

  78. Drutman, S. B., Kendall, J. C. & Trombetta, E. S. Inflammatory spleen monocytes can upregulate CD11c expression without converting into dendritic cells. J. Immunol. 188, 3603–3610 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lee, J. et al. CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathog. 16, e1008621 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zheng, W. et al. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. PLoS Pathog. 20, e1012205 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 21, 145–157 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Arafa, E. I. et al. Recruitment and training of alveolar macrophages after pneumococcal pneumonia. JCI Insight 7, e150239 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Guilliams, M. & Svedberg, F. R. Does tissue imprinting restrict macrophage plasticity? Nat. Immunol. 22, 118–127 (2021).

    Article  PubMed  CAS  Google Scholar 

  85. Mould, K. J., Jackson, N. D., Henson, P. M., Seibold, M. & Janssen, W. J. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 4, e126556 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Evren, E. et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 54, 259–275 (2021).

    Article  PubMed  CAS  Google Scholar 

  87. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Cumming, B. M., Pacl, H. T. & Steyn, A. J. C. Relevance of the warburg effect in tuberculosis for host-directed therapy. Front. Cell Infect. Microbiol. 10, 576596 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Russell, D. G., Huang, L. & VanderVen, B. C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 19, 291–304 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kempner, W. The nature of leukemic blood cells as determined by their metabolism. J. Clin. Invest. 18, 291–300 (1939).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mould, K. J. et al. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. Am. J. Respir. Cell Mol. Biol. 57, 294–306 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sheedy, F. J. & Divangahi, M. Targeting immunometabolism in host defence against Mycobacterium tuberculosis. Immunology 162, 145–159 (2021).

    Article  PubMed  CAS  Google Scholar 

  96. Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022).

    Article  PubMed  CAS  Google Scholar 

  97. VanderVen, B. C. et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog. 11, e1004679 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Nazarova, E. V. et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. Elife 6, e26969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee, W., VanderVen, B. C., Fahey, R. J. & Russell, D. G. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288, 6788–6800 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Munoz-Elias, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol. 60, 1109–1122 (2006).

    Article  PubMed  CAS  Google Scholar 

  102. Simwela, N. V. et al. Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth. Nat. Commun. 15, 9322 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cumming, B. M., Addicott, K. W., Adamson, J. H. & Steyn, A. J. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. Elife 7, e39169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pacl, H. T. et al. NAD(H) homeostasis underlies host protection mediated by glycolytic myeloid cells in tuberculosis. Nat. Commun. 14, 5472 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Chen, M., Gan, H. & Remold, H. G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3707–3716 (2006).

    Article  PubMed  CAS  Google Scholar 

  106. Keane, J., Remold, H. G. & Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164, 2016–2020 (2000).

    Article  PubMed  CAS  Google Scholar 

  107. Moraco, A. H. & Kornfeld, H. Cell death and autophagy in tuberculosis. Semin. Immunol. 26, 497–511 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Tobin, D. M. & Ramakrishnan, L. TB: the Yin and Yang of lipid mediators. Curr. Opin. Pharmacol. 13, 641–645 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Roca, F. J., Whitworth, L. J., Redmond, S., Jones, A. A. & Ramakrishnan, L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell 178, 1344–1361 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tobin, D. M. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Behar, S. M. & Briken, V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Curr. Opin. Immunol. 60, 103–110 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Bell, S. L., Lopez, K. L., Cox, J. S., Patrick, K. L. & Watson, R. O. Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control Mycobacterium tuberculosis infection in macrophages. mBio 12, e0187120 (2021).

    Article  PubMed  Google Scholar 

  113. Simeone, R. et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8, e1002507 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  PubMed  Google Scholar 

  115. Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Michelet, X. et al. Lysosome-mediated plasma membrane repair is dependent on the small GTPase Arl8b and determines cell death type in Mycobacterium tuberculosis infection. J. Immunol. 200, 3160–3169 (2018).

    Article  PubMed  CAS  Google Scholar 

  117. Velmurugan, K. et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 3, e110 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stutz, M. D. et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity 54, 1758–1771 (2021).

    Article  PubMed  CAS  Google Scholar 

  119. Jaisinghani, N. et al. Necrosis driven triglyceride synthesis primes macrophages for inflammation during Mycobacterium tuberculosis infection. Front. Immunol. 9, 1490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lerner, T. R. et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J. Cell Biol. 216, 583–594 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Mahamed, D. et al. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. Elife 6, e22028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10, 899–906 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Cai, Y. et al. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J. Immunol. 192, 2821–2829 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Zhang, L., Jiang, X., Pfau, D., Ling, Y. & Nathan, C. F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. 218, e20200887 (2021).

    Article  PubMed  CAS  Google Scholar 

  126. Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res. 25, 694–701 (2005).

    Article  PubMed  CAS  Google Scholar 

  127. Mayer-Barber, K. D. et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35, 1023–1034 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    Article  PubMed  CAS  Google Scholar 

  129. Lai, Y. et al. Illuminating host-mycobacterial interactions with genome-wide CRISPR knockout and CRISPRi screens. Cell Syst. 11, 239–251 (2020).

    Article  PubMed  CAS  Google Scholar 

  130. Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Peters, J. M. et al. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. Preprint at bioRxiv https://doi.org/10.1101/2023.07.16.549208 (2023).

  132. Mata, E. et al. Pulmonary BCG induces lung-resident macrophage activation and confers long-term protection against tuberculosis. Sci. Immunol. 6, eabc2934 (2021).

    Article  PubMed  CAS  Google Scholar 

  133. Jeyanathan, M. et al. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat. Immunol. 23, 1687–1702 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Peng, X. et al. Mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via mTORC2/HK1-mediated metabolic rewiring. J. Biol. Chem. 300, 105518 (2024).

    Article  PubMed  CAS  Google Scholar 

  135. Fanucchi, S., Dominguez-Andres, J., Joosten, L. A. B., Netea, M. G. & Mhlanga, M. M. The intersection of epigenetics and metabolism in trained immunity. Immunity 54, 32–43 (2021).

    Article  PubMed  CAS  Google Scholar 

  136. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 (2018).

    Article  PubMed  CAS  Google Scholar 

  137. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lavin, R. C. & Tan, S. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathog. 18, e1010459 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Liu, Y. et al. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J. Exp. Med. 213, 809–825 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sarathy, J. P. & Dartois, V. Caseum: a niche for Mycobacterium tuberculosis drug-tolerant persisters. Clin. Microbiol. Rev. 33, e00159–19 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Sarathy, J. P. et al. Extreme drug tolerance of Mycobacterium tuberculosis in caseum. Antimicrob. Agents Chemother. 62, e02266–17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    Article  PubMed  CAS  Google Scholar 

  143. Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Boldrin, F., Provvedi, R., Cioetto Mazzabo, L., Segafreddo, G. & Manganelli, R. Tolerance and persistence to drugs: a main challenge in the fight against Mycobacterium tuberculosis. Front. Microbiol. 11, 1924 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Safi, H. et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc. Natl Acad. Sci. USA 116, 19665–19674 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Vilcheze, C. et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 114, 4495–4500 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Mandal, S., Njikan, S., Kumar, A., Early, J. V. & Parish, T. The relevance of persisters in tuberculosis drug discovery. Microbiology 165, 492–499 (2019).

    Article  PubMed  CAS  Google Scholar 

  149. Manina, G., Dhar, N. & McKinney, J. D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17, 32–46 (2015).

    Article  PubMed  CAS  Google Scholar 

  150. Manina, G., Griego, A., Singh, L. K., McKinney, J. D. & Dhar, N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J. 38, e101876 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Torrey, H. L., Keren, I., Via, L. E., Lee, J. S. & Lewis, K. High persister mutants in Mycobacterium tuberculosis. PLoS ONE 11, e0155127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Helaine, S., Conlon, B. P., Davis, K. M. & Russell, D. G. Host stress drives tolerance and persistence: the bane of anti-microbial therapeutics. Cell Host Microbe 32, 852–862 (2024).

    Article  PubMed  CAS  Google Scholar 

  153. Baek, S. H., Li, A. H. & Sassetti, C. M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Deb, C. et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4, e6077 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Warner, D. F. & Mizrahi, V. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin. Microbiol. Rev. 19, 558–570 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Egorova, A., Salina, E. G. & Makarov, V. Targeting non-replicating Mycobacterium tuberculosis and latent infection: alternatives and perspectives (Mini-Review). Int. J. Mol. Sci. 22, 13317 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Gold, B. & Nathan, C. Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.TBTB2-0031-2016 (2017).

  158. Greenstein, T. & Aldridge, B. B. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front. Cell Infect. Microbiol. 12, 1085946 (2022).

    Article  PubMed  CAS  Google Scholar 

  159. Singhal, A. et al. Metformin as adjunct antituberculosis therapy. Sci. Transl Med. 6, 263ra159 (2014).

    Article  PubMed  Google Scholar 

  160. Kim, M. J. et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S. & Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10, 943–948 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Dinkele, R. et al. Persistent Mycobacterium tuberculosis bioaerosol release in a tuberculosis-endemic setting. iScience 27, 110731 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Russell, D. G., Barry, C. E. III & Flynn, J. L. Tuberculosis: what we don’t know can, and does, hurt us. Science 328, 852–856 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Chackerian, A. A., Perera, T. V. & Behar, S. M. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect. Immun. 69, 2666–2674 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Kamath, A. B., Alt, J., Debbabi, H. & Behar, S. M. Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71, 4112–4118 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kramnik, I. & Beamer, G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin. Immunopathol. 38, 221–237 (2016).

    Article  PubMed  Google Scholar 

  167. Attwood, E. M., Weich, D. J. & Oosthuizen, J. M. Influence of carbon particles on superoxide and hydrogen peroxide radical release during the killing of Mycobacterium bovis by alveolar macrophages. Tuber. Lung Dis. 77, 462–467 (1996).

    Article  PubMed  CAS  Google Scholar 

  168. Attwood, E. M., Weich, D. J. & Oosthuizen, J. M. The influence of carbon particles on the concentration of acid phosphatase and lysozyme enzymes within alveolar macrophages during the killing and degradation of Mycobacterium bovis. Tuber. Lung Dis. 77, 341–347 (1996).

    Article  PubMed  CAS  Google Scholar 

  169. Rylance, J. et al. Chronic household air pollution exposure is associated with impaired alveolar macrophage function in Malawian non-smokers. PLoS ONE 10, e0138762 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rylance, J. et al. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am. J. Respir. Cell Mol. Biol. 52, 584–593 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Jambo, K. C. et al. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 7, 1116–1126 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Mwale, A. et al. B cell, CD8+ T cell and γδ T cell infiltration alters alveolar immune cell homeostasis in HIV-infected Malawian adults. Wellcome Open. Res. 2, 105 (2017).

    PubMed  Google Scholar 

  173. Mwandumba, H. C. et al. Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV infection. J. Immunol. 172, 4592–4598 (2004).

    Article  PubMed  CAS  Google Scholar 

  174. Kleinnijenhuis, J. et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  PubMed  CAS  Google Scholar 

  176. van der Heijden, C. et al. Epigenetics and trained immunity. Antioxid. Redox Signal. 29, 1023–1040 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Arts, R. J. W. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 17, 2562–2571 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Connell, N. D., Medina-Acosta, E., McMaster, W. R., Bloom, B. R. & Russell, D. G. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guérin expressing the Leishmania surface proteinase gp63. Proc. Natl Acad. Sci. USA 90, 11473–11477 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Fortier, A. H., Mock, B. A., Meltzer, M. S. & Nacy, C. A. Mycobacterium bovis BCG-induced protection against cutaneous and systemic Leishmania major infections of mice. Infect. Immun. 55, 1707–1714 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Hilligan, K. L. et al. Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. J. Exp. Med. 219, e20211862 (2022).

    Article  PubMed  CAS  Google Scholar 

  183. Hilligan, K. L., Namasivayam, S. & Sher, A. BCG mediated protection of the lung against experimental SARS-CoV-2 infection. Front. Immunol. 14, 1232764 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Lee, A. et al. BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance. Nat. Immunol. 25, 41–53 (2024).

    Article  PubMed  CAS  Google Scholar 

  185. Khan, N. et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 183, 752–770 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Nemeth, J. et al. Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection. PLoS Pathog. 16, e1008655 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work highlighted in this article was supported by funding from the National Institutes of Health (AI155319, AI162598, OD032135 and AI176575 to D.G.R.; AI167710 and AI164970 to J.T.M.), with additional support from the Bill and Melinda Gates Foundation, and the Mueller Health Foundation to D.G.R. The authors thank Shumin Tan for discussions surrounding the development of Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

D.G.R. and D.P. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to David G. Russell.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Alissa Rothchild, who co-reviewed with Pamelia Lim; Thomas Scriba; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Caseum

The lipid-rich acellular material that derives from dead foamy macrophages and accumulates in the centre of many human TB granulomas.

Cavitation

The process by which the centre of a caseous human TB granuloma collapses into the lung airway, releasing viable Mycobacterium tuberculosis bacilli that can transmit infection to new, susceptible hosts.

Extrinsic apoptosis

A regulated cell death pathway that is triggered either by extracellular mediators that activate a death receptor such as Fas (also known as CD95) or by granzyme B and perforin released from cytotoxic lymphocytes.

Fatty acid oxidation

(FAO). The mitochondrial aerobic process of breaking down long-chain fatty acids into individual acetyl-CoA units.

Fitness reporter strains

Fluorescent Mycobacterium tuberculosis strains that express one fluorochrome constitutively (frequently, mCherry) and another fluorochrome (usually GFP or mkOrange) either in response to specific environmental stimuli, such as nitric oxide, or upon induction with tetracycline.

Glycolysis

The metabolic pathway that converts glucose into pyruvate or lactate, the energy from which is used to generate ATP and nicotinamide adenine dinucleotide (NAD).

Gluconeogenesis

The metabolic pathway that enables the biosynthesis of glucose from non-hexose carbon substrates, such as glycerol, lactate, pyruvate and propionate.

Granuloma

A cluster of immune cells, most frequently macrophages, but also including other cell types such as neutrophils, dendritic cells and lymphocytes, that forms around a site of infection or inflammation.

Intrinsic apoptosis

A programmed cell death pathway that is triggered by intracellular damage or stress, usually associated with permeabilization of the mitochondrial outer membrane.

Necrosis

A programmed cell death pathway that usually occurs in response to excessive cellular stress. In contrast to apoptosis, necrosis is extremely inflammatory and can result in extensive tissue damage.

Oxidative phosphorylation

(OXPHOS). The set of oxygen-dependent metabolic reactions that take place in the mitochondria and convert the energy in macronutrients to ATP.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, D.G., Simwela, N.V., Mattila, J.T. et al. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-024-01124-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01124-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing