Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Language is primarily a tool for communication rather than thought

Abstract

Language is a defining characteristic of our species, but the function, or functions, that it serves has been debated for centuries. Here we bring recent evidence from neuroscience and allied disciplines to argue that in modern humans, language is a tool for communication, contrary to a prominent view that we use language for thinking. We begin by introducing the brain network that supports linguistic ability in humans. We then review evidence for a double dissociation between language and thought, and discuss several properties of language that suggest that it is optimized for communication. We conclude that although the emergence of language has unquestionably transformed human culture, language does not appear to be a prerequisite for complex thought, including symbolic thought. Instead, language is a powerful tool for the transmission of cultural knowledge; it plausibly co-evolved with our thinking and reasoning capacities, and only reflects, rather than gives rise to, the signature sophistication of human cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The language network and its relationship to other cognitive networks.
Fig. 2: Human languages are shaped by communicative pressures.

Similar content being viewed by others

References

  1. Barham, L. & Everett, D. Semiotics and the origin of language in the Lower Palaeolithic. J. Archaeol. Method Theory 28, 535–579 (2021).

    Article  Google Scholar 

  2. Hockett, C. F. The origin of speech. Sci. Am. 203, 88–97 (1960). A classic overview of the relationship between key features of human language and communication systems found in other species, with a focus on distinctive and shared properties.

    Article  Google Scholar 

  3. Jackendoff, R. & Pinker, S. The faculty of language: what’s special about it? Cognition 95, 201–236 (2005).

    Article  PubMed  Google Scholar 

  4. Hurford, J. R. Language in the Light of Evolution: Volume 1, The Origins of Meaning (Oxford Univ. Press, 2007).

  5. Kirby, S., Cornish, H. & Smith, K. Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. Proc. Natl Acad. Sci. USA 105, 10681–10686 (2008). This behavioural investigation introduces an experimental paradigm based on iterated learning of artificial languages for studying the cultural evolution of language; the findings suggest that languages evolve to maximize their transmissibility by becoming easier to learn and more structured.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seyfarth, R. M. & Cheney, D. L. The Social Origins of Language (Princeton Univ. Press, 2018).

  7. Gibson, E. et al. How efficiency shapes human language. Trends Cogn. Sci. 23, 389–407 (2019).

    Article  PubMed  Google Scholar 

  8. Chomsky, N. The Minimalist Program (MIT Press, 1995).

  9. Carruthers, P. The cognitive functions of language. Behav. Brain Sci. 25, 657–674 (2002). This comprehensive review discusses diverse language-for-thought views and puts forward a specific proposal whereby language has a critical role in cross-domain integration.

    Article  PubMed  Google Scholar 

  10. Gentner, D. & Goldin-Meadow, S. Language in Mind: Advances in the Study of Language and Thought (MIT Press, 2003).

  11. Majid, A., Bowerman, M., Kita, S., Haun, D. B. & Levinson, S. C. Can language restructure cognition? The case for space. Trends Cogn. Sci. 8, 108–114 (2004).

    Article  PubMed  Google Scholar 

  12. Vygotsky, L. S. Thought and Language (MIT Press, 2012).

  13. Lupyan, G. The centrality of language in human cognition. Lang. Learn. 66, 516–553 (2016).

    Article  Google Scholar 

  14. Davidson, D. in Mind and Language (ed. Guttenplan, S.) 1975–1977 (Oxford Univ. Press, 1975).

  15. Dummett, M. Origins of Analytical Philosophy (Harvard Univ. Press, 1994).

  16. Gleitman, L. & Papafragou, A. in The Cambridge Handbook of Thinking and Reasoning (eds Holyoak, K. J. & Morrison, R. G.) 633–661 (Cambridge Univ. Press, 2005).

  17. de Villiers, J. in Understanding Other Minds: Perspectives from Developmental Cognitive Neuroscience (eds Baron-Cohen, S. et al.) 83–123 (Oxford Univ. Press, 2000).

  18. Gentner, D. in Language in Mind: Advances in the Study of Language and Thought (eds Gentner, D. & Goldin-Meadow, S.) 3–14 (MIT Press, 2003). This position piece articulates one version of a language-for-thought hypothesis, whereby human intelligence is due to a combination of our analogical reasoning ability, possession of symbolic representations, and the ability of relational language to improve analogical reasoning abilities.

  19. Buller, D. J. Adapting Minds: Evolutionary Psychology and the Persistent Quest for Human Nature (MIT Press, 2005).

  20. Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article  Google Scholar 

  21. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). This article introduces a formal framework for systems of information transfer, with core concepts such as channel capacity, and lays a foundation for the field of information theory.

    Article  MathSciNet  Google Scholar 

  22. Goldberg, A. E. Constructions: A Construction Grammar Approach to Argument Structure (Univ. Chicago Press, 1995).

  23. Jackendoff, R. Foundations of Language: Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, 2002).

  24. Geschwind, N. The organization of language and the brain: language disorders after brain damage help in elucidating the neural basis of verbal behavior. Science 170, 940–944 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).

    Article  PubMed  Google Scholar 

  26. Bates, E. et al. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6, 448–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hagoort, P. The neurobiology of language beyond single-word processing. Science 366, 55–58 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Fedorenko, E., Ivanova, A. I. & Regev, T. I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. 25, 289–312 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. Neville, H. J. et al. Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. Proc. Natl Acad. Sci. USA 95, 922–929 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fedorenko, E., Hsieh, P.-J., Nieto-Castañon, A., Whitfield-Gabrieli, S. & Kanwisher, N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C. & Dehaene, S. A temporal bottleneck in the language comprehension network. J. Neurosci. 32, 9089–9102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33, 15978–15988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, J. et al. Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production. Cereb. Cortex 33, 4384–4404 (2022).

    Article  PubMed Central  Google Scholar 

  34. Menenti, L., Gierhan, S. M. E., Segaert, K. & Hagoort, P. Shared language: overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychol. Sci. 22, 1173–1182 (2011). This fMRI investigation establishes that language comprehension and language production draw on the same brain areas in the left frontal and temporal cortex.

    Article  PubMed  Google Scholar 

  35. Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Pallier, C., Devauchelle, A. D. & Dehaene, S. Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bozic, M., Fonteneau, E., Su, L. & Marslen‐Wilson, W. D. Grammatical analysis as a distributed neurobiological function. Hum. Brain Mapp. 36, 1190–1201 (2015).

    Article  PubMed  Google Scholar 

  38. Rodd, J. M., Vitello, S., Woollams, A. M. & Adank, P. Localising semantic and syntactic processing in spoken and written language comprehension: an activation likelihood estimation meta-analysis. Brain Lang. 141, 89–102 (2015).

    Article  PubMed  Google Scholar 

  39. Blank, I., Balewski, Z., Mahowald, K. & Fedorenko, E. Syntactic processing is distributed across the language system. NeuroImage 127, 307–323 (2016).

    Article  PubMed  Google Scholar 

  40. Fedorenko, E. et al. Neural correlate of the construction of sentence meaning. Proc. Natl Acad. Sci. USA 113, E6256–E6262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson, M. J. et al. Neurophysiological dynamics of phrase-structure building during sentence processing. Proc. Natl Acad. Sci. USA 114, E3669–E3678 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fedorenko, E., Blank, I. A., Siegelman, M. & Mineroff, Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 203, 104348 (2020). This fMRI investigation establishes that every part of the language network that is sensitive to syntactic structure building is also sensitive to word meanings and comprehensively reviews literature relevant to the syntax selectivity debate.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Giglio, L., Ostarek, M. O., Weber, K. & Hagoort, P. Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cereb. Cortex 32, 1405–1418 (2022).

    Article  PubMed  Google Scholar 

  44. Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P. & De Lange, F. P. A hierarchy of linguistic predictions during natural language comprehension. Proc. Natl Acad. Sci. USA 119, e2201968119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shain, C., Blank, I. A., Fedorenko, E., Gibson, E. & Schuler, W. Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex. J. Neurosci. 42, 7412–7430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Desbordes, T. et al. Dimensionality and ramping: signatures of sentence integration in the dynamics of brains and deep language models. J. Neurosci. 43, 5350–5364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shain, C. et al. Distributed sensitivity to syntax and semantics throughout the language network. J. Cogn. Neurosci. 22, 1–43 (2024). This fMRI investigation establishes distributed sensitivity to cognitive demands associated with lexical access, syntactic structure building and semantic composition across the language network.

  48. Tuckute, G. et al. Driving and suppressing the human language network using large language models. Nat. Hum. Behav. 8, 544–561 (2024).

    Article  PubMed  Google Scholar 

  49. Gentner, D. Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983).

    Google Scholar 

  50. Duncan, J. How Intelligence Happens (Yale Univ. Press, 2012).

  51. Varley, R. A., Klessinger, N. J., Romanowski, C. A. & Siegal, M. Agrammatic but numerate. Proc. Natl Acad. Sci. USA 102, 3519–3524 (2005). Patients with acquired damage to the language network display aphasia and linguistic deficits (including severe grammatical difficulties) but perform at the level of neurotypical control participants on diverse numerical reasoning tasks.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klessinger, N., Szczerbinski, M. & Varley, R. Algebra in a man with severe aphasia. Neuropsychologia 45, 1642–1648 (2007).

    Article  PubMed  Google Scholar 

  53. Lecours, A. & Joanette, Y. Linguistic and other psychological aspects of paroxysmal aphasia. Brain and Language 10, 1–23 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Kertesz, A. in Thought Without Language (ed. Weiskrantz, L.) 451–463 (Oxford Univ. Press, 1988).

  55. Varley, R. & Siegal, M. Evidence for cognition without grammar from causal reasoning and ‘theory of mind’ in an agrammatic aphasic patient. Curr. Biol. 10, 723–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Siegal, M., Varley, R. & Want, S. C. Mind over grammar: reasoning in aphasia and development. Trends Cogn. Sci. 5, 296–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Varley, R. In Cognitive Bases of Science (eds Carruthers, P. et al.) 99–116 (Cambridge Univ. Press, 2002).

  58. Woolgar, A., Duncan, J., Manes, F. & Fedorenko, E. Fluid intelligence is supported by the multiple-demand system not the language system. Nat. Hum. Behav. 2, 200–204 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dronkers, N. F., Ludy, C. A. & Redfern, B. B. Pragmatics in the absence of verbal language: descriptions of a severe aphasic and a language-deprived adult. J. Neurolinguistics 11, 179–190 (1998).

    Article  Google Scholar 

  60. Varley, R., Siegal, M. & Want, S. C. Severe impairment in grammar does not preclude theory of mind. Neurocase 7, 489–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Apperly, I. A., Samson, D., Carroll, N., Hussain, S. & Humphreys, G. Intact first-and second-order false belief reasoning in a patient with severely impaired grammar. Soc. Neurosci. 1, 334–348 (2006). A person with acquired damage to the language network and consequent aphasia exhibits linguistic deficits but performs at the level of neurotypical control participants on theory of mind tasks.

    Article  PubMed  Google Scholar 

  62. Willems, R. M., Benn, Y., Hagoort, P., Toni, I. & Varley, R. Communicating without a functioning language system: Implications for the role of language in mentalizing. Neuropsychologia 49, 3130–3135 (2011).

    Article  PubMed  Google Scholar 

  63. Bek, J., Blades, M., Siegal, M. & Varley, R. Language and spatial reorientation: evidence from severe aphasia. J. Exp. Psychol. 36, 646 (2010).

    Google Scholar 

  64. Caramazza, A., Berndt, R. S. & Brownell, H. H. The semantic deficit hypothesis: Perceptual parsing and object classification by aphasic patients. B. Lang. 15, 161–189 (1982).

    Article  CAS  Google Scholar 

  65. Chertkow, H., Bub, D., Deaudon, C. & Whitehead, V. On the status of object concepts in aphasia. Brain Lang. 58, 203–232 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Saygın, A. P., Wilson, S. M., Dronkers, N. F. & Bates, E. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42, 1788–1804 (2004).

    Article  PubMed  Google Scholar 

  67. Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).

    Article  PubMed  Google Scholar 

  68. Dickey, M. W. & Warren, T. The influence of event-related knowledge on verb-argument processing in aphasia. Neuropsychologia 67, 63–81 (2015).

    Article  PubMed  Google Scholar 

  69. Ivanova, A. A. et al. The language network is recruited but not required for nonverbal event semantics. Neurobiol. Lang. 2, 176–201 (2021). In this fMRI study, semantic processing of event pictures in neurotypical individuals engages the language network, but less than verbal descriptions of the same events; however, individuals with acquired damage to the language network and consequent aphasia perform at the level of neurotypical control participants on a non-verbal semantic task.

    Article  Google Scholar 

  70. Benn, Y. et al. The language network is not engaged in object categorization. Cereb. Cortex 33, 10380–10400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Varley, R. Reason without much language. Lang. Sci. 46, 232–244 (2014).

    Article  Google Scholar 

  72. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284, 970–974 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Hermer, L. & Spelke, E. Modularity and development: the case of spatial reorientation. Cognition 61, 195–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Lupyan, G. Extracommunicative functions of language: verbal interference causes selective categorization impairments. Psychon. Bull. Rev. 16, 711–718 (2009).

    Article  PubMed  Google Scholar 

  75. Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020). This fMRI investigation of the language network establishes this network as one of the intrinsic large-scale networks in the human brain, distinct from nearby cognitive networks.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fedorenko, E. & Blank, I. A. Broca’s area is not a natural kind. Trends Cogn. Sci. 24, 270–284 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fedorenko, E., Behr, M. K. & Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl Acad. Sci. USA 108, 16428–16433 (2011). This fMRI investigation finds that arithmetic addition, demanding executive function tasks and music processing do not engage the language areas, thus establishing their selectivity for linguistic input over non-linguistic inputs and tasks.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Monti, M. M., Parsons, L. M. & Osherson, D. N. Thought beyond language: neural dissociation of algebra and natural language. Psychol. Sci. 23, 914–922 (2012).

    Article  PubMed  Google Scholar 

  79. Amalric, M. & Dehaene, S. A distinct cortical network for mathematical knowledge in the human brain. NeuroImage 189, 19–31 (2019).

    Article  PubMed  Google Scholar 

  80. Monti, M. M., Osherson, D. N., Martinez, M. J. & Parsons, L. M. Functional neuroanatomy of deductive inference: a language-independent distributed network. NeuroImage 37, 1005–1016 (2007).

    Article  PubMed  Google Scholar 

  81. Monti, M. M., Parsons, L. M. & Osherson, D. N. The boundaries of language and thought in deductive inference. Proc. Natl Acad. Sci. USA 106, 12554–12559 (2009). This fMRI investigation finds largely non-overlapping activations of brain regions to language processing and logical processing, thus establishing the selectivity of language areas for linguistic input over logic statements.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ivanova, A. A. et al. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 9, e58906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, Y. F., Kim, J., Wilson, C. & Bedny, M. Computer code comprehension shares neural resources with formal logical inference in the fronto-parietal network. eLife 9, e59340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Paunov, A. M., Blank, I. A. & Fedorenko, E. Functionally distinct language and theory of mind networks are synchronized at rest and during language comprehension. J. Neurophysiol. 121, 1244–1265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Paunov, A. M. et al. Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and theory of mind (ToM) brain networks. Neurobiol. Lang. 3, 413–440 (2022).

    Article  Google Scholar 

  86. Shain, C., Paunov, A., Chen, X., Lipkin, B. & Fedorenko, E. No evidence of theory of mind reasoning in the human language network. Cereb. Cortex 33, 6299–6319 (2023).

    Article  PubMed  Google Scholar 

  87. Sueoka, Y., Paunov, A., Ivanova, A., Blank, I. A. & Fedorenko, E. The language network reliably “tracks” naturalistic meaningful non-verbal stimuli. Neurobiol. Lang. https://doi.org/10.1162/nol_a_00135 (2024).

  88. Piaget, J. The Language and Thought of the Child (Harcourt Brace, 1926).

  89. Gentner, D. & Loewenstein, J. in Language, Literacy, and Cognitive Development: The Development and Consequences of Symbolic Communication (eds Amsel, E. & Byrnes, J. P.) 89–126 (Lawrence Erlbaum Associates, 2002).

  90. Appleton, M. & Reddy, V. Teaching three year‐olds to pass false belief tests: a conversational approach. Soc. Dev. 5, 275–291 (1996).

    Article  Google Scholar 

  91. Slaughter, V. & Gopnik, A. Conceptual coherence in the child’s theory of mind: training children to understand belief. Child Dev. 67, 2967–2988 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Hiersche, K. J., Schettini, E., Li, J. & Saygin, Z. M. (2022). Functional dissociation of the language network and other cognition in early childhood. Preprint at bioRxiv https://doi.org/10.1101/2022.08.11.503597 (2023).

  93. Hiersche, K. J. Functional Organization and Modularity of the Superior Temporal Lobe in Children. Masters thesis, The Ohio State University (2023).

  94. Hall, W. C. What you don’t know can hurt you: the risk of language deprivation by impairing sign language development in deaf children. Matern. Child Health J. 21, 961–965 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hall, M. L., Hall, W. C. & Caselli, N. K. Deaf children need language, not (just) speech. First Lang. 39, 367–395 (2019).

    Article  Google Scholar 

  96. Bedny, M. & Saxe, R. Insights into the origins of knowledge from the cognitive neuroscience of blindness. Cogn. Neuropsychol. 29, 56–84 (2012).

    Article  PubMed  Google Scholar 

  97. Grand, G., Blank, I. A., Pereira, F. & Fedorenko, E. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nat. Hum. Behav. 6, 975–987 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jackendoff, R. How language helps us think. Pragmat. Cogn. 4, 1–34 (1996).

    Article  Google Scholar 

  99. Jackendoff. R. The User’s Guide to Meaning (MIT Press, 2012).

  100. Curtiss, S. Genie: A Psycholinguistic Study of a Modern-day Wild Child (Academic Press, 1977).

  101. Peterson, C. C. & Siegal, M. Representing inner worlds: theory of mind in autistic, deaf, and normal hearing children. Psychol. Sci. 10, 126–129 (1999).

    Article  Google Scholar 

  102. Richardson, H. et al. Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language. Nat. Commun. 11, 3246 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spelke, E. S. What Babies Know: Core Knowledge and Composition, Vol. 1 (Oxford Univ. Press, 2022).

  104. Cheney, D. L. & Seyfarth, R. M. How Monkeys See the World: Inside the Mind of Another Species (Univ. Chicago Press, 1990).

  105. Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Tomasello, M. & Herrmann, E. Ape and human cognition: what’s the difference? Curr. Dir. Psychol. Sci. 19, 3–8 (2010).

    Article  Google Scholar 

  107. Fischer, J. Monkeytalk: Inside the Worlds and Minds of Primates (Univ. Chicago Press, 2017).

  108. Krupenye, C. & Call, J. Theory of mind in animals: current and future directions. Wiley Interdiscip. Rev. Cogn. Sci. 10, e1503 (2019).

    Article  PubMed  Google Scholar 

  109. Shimizu, T. Why can birds be so smart? Background, significance, and implications of the revised view of the avian brain. Comparat. Cogn. Behav. Rev. 4, 103–115 (2009).

    Google Scholar 

  110. Güntürkün, O. & Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 20, 291–303 (2016).

    Article  PubMed  Google Scholar 

  111. Hart, B. L., Hart, L. A. & Pinter-Wollman, N. Large brains and cognition: where do elephants fit in? Neurosci. Biobehav. Rev. 32, 86–98 (2008).

    Article  PubMed  Google Scholar 

  112. Godfrey-Smith, P. Other Minds: The Octopus and the Evolution of Intelligent Life (William Collins, 2016).

  113. Schnell, A. K., Amodio, P., Boeckle, M. & Clayton, N. S. How intelligent is a cephalopod? Lessons from comparative cognition. Biol. Rev. 96, 162–178 (2021).

    Article  PubMed  Google Scholar 

  114. Gallistel, C. R. Prelinguistic thought. Lang. Learn. Dev. 7, 253–262 (2011).

    Article  Google Scholar 

  115. Fitch, W. T. Animal cognition and the evolution of human language: why we cannot focus solely on communication. Philos. Trans. R. Soc. B 375, 20190046 (2020).

    Article  Google Scholar 

  116. Yamada, J. E. & Marshall, J. C. Laura: A Case Study for the Modularity of Language (MIT Press, 1990).

  117. Rondal, J. A. Exceptional Language Development in Down Syndrome (Cambridge Univ. Press, 1995).

  118. Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z. & St George, M. The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J. Cogn. Neurosci. 12, 7–29 (2000).

    Article  PubMed  Google Scholar 

  119. Little, B. et al. Language in schizophrenia and aphasia: the relationship with non-verbal cognition and thought disorder. Cogn. Neuropsychiatry 24, 389–405 (2019).

    Article  PubMed  Google Scholar 

  120. Mahowald, K. et al. Dissociating language and thought in large language models. Trends Cogn. Sci. 28, 517–540(2024).

  121. Chomsky, N., Belleti, A. & Rizzi, L. in On Nature and Language (eds Belleti, A. & Rizzi, L.) 92–161 (Cambridge Univ. Press, 2002).

  122. Schwartz, J. L., Boë, L. J., Vallée, N. & Abry, C. The dispersion–focalization theory of vowel systems. J. Phonetics 25, 255–286 (1997).

    Article  Google Scholar 

  123. Diehl, R. L. Acoustic and auditory phonetics: the adaptive design of speech sound systems. Philos. Trans. R. Soc. B 363, 965–978 (2008).

    Article  Google Scholar 

  124. Everett, C., Blasi, D. E. & Roberts, S. G. Climate, vocal folds, and tonal languages: Connecting the physiological and geographic dots. Proc. Natl Acad. Sci. USA 112, 1322–1327 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Blasi, D. E. et al. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science 363, eaav3218 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Dautriche, I., Mahowald, K., Gibson, E., Christophe, A. & Piantadosi, S. T. Words cluster phonetically beyond phonotactic regularities. Cognition 163, 128–145 (2017).

    Article  PubMed  Google Scholar 

  127. Piantadosi, S. T., Tily, H. & Gibson, E. Word lengths are optimized for efficient communication. Proc. Natl Acad. Sci. USA 108, 3526–3529 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Levelt, W. J. Speaking: From Intention to Articulation (MIT Press, 1993).

  129. Kemp, C. & Regier, T. Kinship categories across languages reflect general communicative principles. Science 336, 1049–1054 (2012). This study provides a computational demonstration that the kinship systems across world’s languages trade off between simplicity and informativeness in a near-optimal way, and argue that these principles also characterize other category systems.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Gibson, E. et al. Color naming across languages reflects color use. Proc. Natl Acad. Sci. USA 114, 10785–10790 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zaslavsky, N., Kemp, C., Regier, T. & Tishby, N. Efficient compression in color naming and its evolution. Proc. Natl Acad. Sci. USA 115, 7937–7942 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kemp, C., Gaby, A. & Regier, T. Season naming and the local environment. Proc. 41st Annual Meeting of the Cognitive Science Society 539–545 (2019).

  133. Xu, Y., Liu, E. & Regier, T. Numeral systems across languages support efficient communication: From approximate numerosity to recursion. Open Mind 4, 57–70 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Denić, M., Steinert-Threlkeld, S. & Szymanik, J. Complexity/informativeness trade-off in the domain of indefinite pronouns. Semant. Linguist. Theor. 30, 166–184 (2021).

    Article  Google Scholar 

  135. Mollica, F. et al. The forms and meanings of grammatical markers support efficient communication. Proc. Natl Acad. Sci. USA 118, e2025993118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van de Pol, I., Lodder, P., van Maanen, L., Steinert-Threlkeld, S. & Szymanik, J. Quantifiers satisfying semantic universals have shorter minimal description length. Cognition 232, 105150 (2023).

    Article  PubMed  Google Scholar 

  137. Clark, H. H. in Context in Language Learning and Language Understanding (eds Malmkj’r, K. & Williams, J.) 63–87) (Cambridge Univ. Press, 1998).

  138. Winter, B., Perlman, M. & Majid, A. Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition 179, 213–220 (2018).

    Article  PubMed  Google Scholar 

  139. von Humboldt, W. Uber die Verschiedenheit des Menschlichen Sprachbaues (1836).

  140. Hurford, J. R. Linguistic Evolution Through Language Acquisition: Formal and Computational Models (ed. Briscoe, E.) 301–344 (Cambridge Univ. Press, 2002).

  141. Smith, K., Brighton, H. & Kirby, S. Complex systems in language evolution: the cultural emergence of compositional structure. Adv. Complex Syst. 6, 537–558 (2003).

    Article  Google Scholar 

  142. Piantadosi, S. T. & Fedorenko, E. Infinitely productive language can arise from chance under communicative pressure. J. Lang. Evol. 2, 141–147 (2017).

    Article  Google Scholar 

  143. Gibson, E. Linguistic complexity: locality of syntactic dependencies. Cognition 68, 1–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Lewis, R. L., Vasishth, S. & Van Dyke, J. A. Computational principles of working memory in sentence comprehension. Trends Cogn. Sci. 10, 447–454 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Liu, H. Dependency distance as a metric of language comprehension difficulty. J. Cogn. Sci. 9, 151–191 (2008).

    ADS  CAS  Google Scholar 

  146. Futrell, R., Mahowald, K. & Gibson, E. Large-scale evidence of dependency length minimization in 37 languages. Proc. Natl Acad. Sci. USA 112, 10336–10341 (2015). This investigation of syntactic dependency lengths across 37 diverse languages suggests that dependencies are predominantly local cross-linguistically, presumably because non-local dependencies are cognitively costly in both production and comprehension.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dryer, M. S. The Greenbergian word order correlations. Language 68, 81–138 (1992).

    Article  Google Scholar 

  148. Hahn, M., Jurafsky, D. & Futrell, R. Universals of word order reflect optimization of grammars for efficient communication. Proc. Natl Acad. Sci. USA 117, 2347–2353 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Goldin-Meadow, S., Wing, C. S., Özyürek, A. & Mylander, C. The natural order of events: how speakers of different languages represent events nonverbally. Proc. Natl Acad. Sci. USA 105, 9163–9168 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Senghas, A., Kita, S. & Ozyürek, A. Children creating core properties of language: evidence from an emerging sign language in Nicaragua. Science 305, 1779–1782 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  151. Sandler, W., Meir, I., Padden, C. & Aronoff, M. The emergence of grammar: systematic structure in a new language. Proc. Natl Acad. Sci. USA 102, 2661–2665 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gibson, E. et al. A noisy-channel account of crosslinguistic word-order variation. Psychol. Sci. 24, 1079–1088 (2013).

    Article  PubMed  Google Scholar 

  153. Levy, R. A noisy-channel model of human sentence comprehension under uncertain input. In Proc. Conference on Empirical Methods in Natural Language Processing 234–243 (2008).

  154. Gibson, E., Bergen, L. & Piantadosi, S. T. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proc. Natl Acad. Sci. USA 110, 8051–8056 (2013). This behavioural investigation demonstrates that language comprehension is robust to noise: in the presence of corrupt linguistic input, listeners and readers rely on a combination of prior expectations about messages that are likely to be communicated and knowledge of how linguistic signals can get corrupted by noise.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Futrell, R., Levy, R. P. & Gibson, E. Dependency locality as an explanatory principle for word order. Language 96, 371–412 (2020).

    Article  Google Scholar 

  156. Hahn, M. & Xu, Y. Crosslinguistic word order variation reflects evolutionary pressures of dependency and information locality. Proc. Natl Acad. Sci. USA 119, e2122604119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hahn, M., Futrell, R., Levy, R. & Gibson, E. A resource-rational model of human processing of recursive linguistic structure. Proc. Natl Acad. Sci. USA 119, e2122602119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Piantadosi, S. T., Tily, H. & Gibson, E. The communicative function of ambiguity in language. Cognition 122, 280–291 (2012).

    Article  PubMed  Google Scholar 

  159. Quijada, J. A grammar of the Ithkuil language—introduction. ithkuil.net https://ithkuil.net/00_intro.html (accessed 27 February 2022).

  160. Srinivasan, M. & Rabagliati, H. The implications of polysemy for theories of word learning. Child Dev. Perspect. 15, 148–153 (2021).

    Article  Google Scholar 

  161. Bizzi, E. Motor control revisited: a novel view. Curr. Trends Neurol. 10, 75–80 (2016).

    Google Scholar 

  162. Darwin, C. On the Origin of Species–A Facsimile of the First Edition (Harvard Univ. Press, 1964).

  163. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109, 10661–10668 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. White, L. T. The historical roots of our ecologic crisis. Science 155, 1203–1207 (1967).

    Article  ADS  PubMed  Google Scholar 

  165. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  166. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

    Article  Google Scholar 

  167. Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013). This review presents the evidence for the disproportionate expansion of the association cortex relative to other brain areas in humans.

    Article  PubMed  Google Scholar 

  168. Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. NeuroImage 19, 1835–1842 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Deen, B. & Freiwald, W. A. Parallel systems for social and spatial reasoning within the cortical apex. Preprint at bioRxiv https://doi.org/10.1101/2021.09.23.461550 (2021).

  172. Mitchell, D. J. et al. A putative multiple-demand system in the macaque brain. J. Neurosci. 36, 8574–8585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cantlon, J. & Piantadosi, S. Uniquely human intelligence arose from expanded information capacity. Nat. Rev. Psychol. 3, 275–293 (2024).

    Article  Google Scholar 

  174. Tomasello, M. The Cultural Origins of Human Cognition (Harvard Univ. Press, 2009).

  175. Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: Why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton Univ. Press, 2016).

  177. Heyes, C. Cognitive Gadgets (Harvard Univ. Press, 2018).

  178. Gumperz, J. J. & Levinson, S. C. (eds). Rethinking Linguistic Relativity (Cambridge Univ. Press, 1996).

  179. Piaget, J. Language and Thought of the Child: Selected Works, Vol. 5 (Routledge, 2005).

  180. Gleitman, L. R. & Papafragou, A. in Cambridge Handbook of Thinking and Reasoning (eds Holyoak, K. & Morrison, R.) 2nd edn (Oxford Univ. Press, 2016).

  181. Fedorenko, E. & Varley, R. Language and thought are not the same thing: evidence from neuroimaging and neurological patients. Ann. NY Acad. Sci. 1369, 132–153 (2016).

    Article  ADS  PubMed  Google Scholar 

  182. Gentner, D. Language as cognitive tool kit: How language supports relational thought. Am. Psychol. 71, 650 (2016).

    Article  PubMed  Google Scholar 

  183. Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition 108, 819–824 (2008).

    Article  PubMed  Google Scholar 

  184. Wernicke, C. The aphasic symptom-complex: a psychological study on an anatomical basis. Arch. Neurol. 22, 280–282 (1869).

    Article  Google Scholar 

  185. Lichteim, L. On aphasia. Brain 7, 433–484 (1885).

    Article  Google Scholar 

  186. Poeppel, D., Emmorey, K., Hickok, G. & Pylkkänen, L. Towards a new neurobiology of language. J. Neurosci. 32, 14125–14131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tremblay, P. & Dick, A. S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 162, 60–71 (2016).

    Article  PubMed  Google Scholar 

  188. Hillis, A. E. et al. Re‐examining the brain regions crucial for orchestrating speech articulation. Brain 127, 1479–1487 (2004).

    Article  PubMed  Google Scholar 

  189. Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 89, 1187–1193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Guenther, F. H. Neural Control of Speech (MIT Press, 2016).

  192. Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional characterization of the human speech articulation network. Cereb. Cortex 28, 1816–1830 (2018).

    Article  PubMed  Google Scholar 

  193. Obleser, J., Zimmermann, J., Van Meter, J. & Rauschecker, J. P. Multiple stages of auditory speech perception reflected in event-related fMRI. Cereb. Cortex 17, 2251–2257 (2007).

    Article  PubMed  Google Scholar 

  194. Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Overath, T., McDermott, J., Zarate, J. & Poeppel, D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 18, 903–911 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Norman-Haignere, S. V. et al. A neural population selective for song in human auditory cortex. Curr. Biol. 32, 1470–1484.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Friederici, A. D. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16, 262–268 (2012).

    Article  PubMed  Google Scholar 

  200. Wilson, S. M. et al. Recovery from aphasia in the first year after stroke. Brain 146, 1021–1039 (2023).

    Article  PubMed  Google Scholar 

  201. Radford, A. et al. Language models are unsupervised multitask learners. OpenAI blog 1, 9 (2019).

  202. Jain, S. & Huth, A. Incorporating context into language encoding models for fMRI. in Proc. 32nd International Conf. Neural Information Processing Systems (eds Bengio, S. et al.) (Curran Associates, 2018).

  203. Schrimpf, M. et al. The neural architecture of language: Integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, e2105646118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Caucheteux, C. & King, J. R. Brains and algorithms partially converge in natural language processing. Commun. Biol. 5, 134 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Goldstein, A. et al. Shared computational principles for language processing in humans and deep language models. Nat. Neurosci. 25, 369–380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tuckute, T., Kanwisher, N. & Fedorenko, E. Language in brains, minds, and machines. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-120623-101142 (2024).

  207. Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Leonard, M. K. et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 626, 593–602 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Fodor, J. A. The Language of Thought (Crowell, 1975).

  210. Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988).

    Article  CAS  PubMed  Google Scholar 

  211. Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Quilty-Dunn, J., Porot, N. & Mandelbaum, E. The best game in town: the reemergence of the language-of-thought hypothesis across the cognitive sciences. Behav. Brain Sci. 46, e261 (2023).

    Article  Google Scholar 

  213. Rumelhart, D. E., McClelland, J. L. & PDP Research Group. Parallel Distributed Processing, Vol. 1: Explorations in the Microstructure of Cognition: Foundations (MIT Press, 1986).

  214. Smolensky, P. & Legendre, G. The Harmonic Mind: From Neural Computation to Optimality–Theoretic Grammar Vol. 1: Cognitive Architecture (MIT Press, 2006).

  215. Frankland, S. M. & Greene, J. D. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303 (2020).

    Article  PubMed  Google Scholar 

  216. Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115–121 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  217. Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  218. Pena, M. et al. Sounds and silence: an optical topography study of language recognition at birth. Proc. Natl Acad. Sci. USA 100, 11702–11705 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cristia, A., Minagawa, Y. & Dupoux, E. Responses to vocalizations and auditory controls in the human newborn brain. PLoS ONE 9, e115162 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Ivanova, R. Jackendoff, N. Kanwisher, K. Mahowald, R. Seyfarth, C. Shain and N. Zaslavsky for helpful comments on earlier drafts of the manuscript; N. Caselli, M. Coppola, A. Hillis, L. Menn, R. Varley and S. Wilson for comments on specific sections; C. Casto, T. Regev, F. Mollica and R. Futrell for help with the figures; and S. Swords, N. Jhingan, H. S. Kim and A. Sathe for help with references. E.F. was supported by NIH awards DC016607 and DC016950 from NIDCD, NS121471 from NINDS, and from funds from MIT’s McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, and Quest for Intelligence.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to conceiving, writing and revising this piece.

Corresponding author

Correspondence to Evelina Fedorenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Angelika Kratzer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, E., Piantadosi, S.T. & Gibson, E.A.F. Language is primarily a tool for communication rather than thought. Nature 630, 575–586 (2024). https://doi.org/10.1038/s41586-024-07522-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07522-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing