1
|
Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811. [PMID: 10837075 DOI: 10.1146/annurev.immunol.18.1.767] [Citation(s) in RCA: 4794] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.
Collapse
|
Review |
25 |
4794 |
2
|
Abstract
Dendritic cells (DCs) collect and process antigens for presentation to T cells, but there are many variations on this basic theme. DCs differ in the regulatory signals they transmit, directing T cells to different types of immune response or to tolerance. Although many DC subtypes arise from separate developmental pathways, their development and function are modulated by exogenous factors. Therefore, we must study the dynamics of the DC network in response to microbial invasion. Despite the difficulty of comparing the DC systems of humans and mice, recent work has revealed much common ground.
Collapse
|
Review |
23 |
1613 |
3
|
Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017; 356:eaah4573. [PMID: 28428369 PMCID: PMC5775029 DOI: 10.1126/science.aah4573] [Citation(s) in RCA: 1602] [Impact Index Per Article: 200.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
1602 |
4
|
Abstract
Bone marrow-derived antigen-presenting cells (APCs) take up cell-associated antigens and present them in the context of major histocompatibility complex (MHC) class I molecules to CD8(+) T cells in a process referred to as cross-priming. Cross-priming is essential for the induction of CD8(+) T cell responses directed towards antigens not expressed in professional APCs. Although in vitro experiments have shown that dendritic cells (DCs) and macrophages are capable of presenting exogenous antigens in association with MHC class I, the cross-presenting cell in vivo has not been identified. We have isolated splenic DCs after in vivo priming with ovalbumin-loaded beta2-microglobulin-deficient splenocytes and show that they indeed present cell-associated antigens in the context of MHC class I molecules. This process is transporter associated with antigen presentation (TAP) dependent, suggesting an endosome to cytosol transport. To determine whether a specific subset of splenic DCs is involved in this cross-presentation, we negatively and positively selected for CD8(-) and CD8(+) DCs. Only the CD8(+), and not the CD8(-), DC subset demonstrates cross-priming ability. FACS((R)) studies after injection of splenocytes loaded with fluorescent beads showed that 1 and 0.6% of the CD8(+) and the CD8(-) DC subsets, respectively, had one or more associated beads. These results indicate that CD8(+) DCs play an important role in the generation of cytotoxic T lymphocyte responses specific for cell-associated antigens.
Collapse
|
research-article |
25 |
1028 |
5
|
Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002; 3:1097-101. [PMID: 12368911 DOI: 10.1038/ni846] [Citation(s) in RCA: 874] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Accepted: 09/06/2002] [Indexed: 12/12/2022]
Abstract
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) plays a critical role in peripheral tolerance. However, regulatory pathways initiated by the interactions of CTLA-4 with B7 counterligands expressed on antigen-presenting cells are not completely understood. We show here that long-term survival of pancreatic islet allografts induced by the soluble fusion protein CTLA-4-immunoglobulin (CTLA-4-Ig) is contingent upon effective tryptophan catabolism in the host. In vitro, we show that CTLA-4-Ig regulates cytokine-dependent tryptophan catabolism in B7-expressing dendritic cells. These data suggest that modulation of tryptophan catabolism is a means by which CTLA-4 functions in vivo and that CTLA-4 acts as a ligand for B7 receptor molecules that transduce intracellular signals.
Collapse
|
|
23 |
874 |
6
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 845] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
|
Review |
7 |
845 |
7
|
Maldonado-López R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189:587-92. [PMID: 9927520 PMCID: PMC2192907 DOI: 10.1084/jem.189.3.587] [Citation(s) in RCA: 769] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells of the dendritic family display some unique properties that confer to them the capacity to sensitize naive T cells in vitro and in vivo. In the mouse, two subclasses of dendritic cells (DCs) have been described that differ by their CD8alpha expression and their localization in lymphoid organs. The physiologic function of both cell populations remains obscure. Studies conducted in vitro have suggested that CD8alpha+ DCs could play a role in the regulation of immune responses, whereas conventional CD8alpha- DCs would be more stimulatory. We report here that both subclasses of DCs efficiently prime antigen-specific T cells in vivo, and direct the development of distinct T helper (Th) populations. Antigen-pulsed CD8alpha+ and CD8alpha- DCs are separated after overnight culture in recombinant granulocyte/macrophage colony-stimulating factor and injected into the footpads of syngeneic mice. Administration of CD8alpha- DCs induces a Th2-type response, whereas injection of CD8alpha+ DCs leads to Th1 differentiation. We further show that interleukin 12 plays a critical role in Th1 development by CD8alpha+ DCs. These findings suggest that the nature of the DC that presents the antigen to naive T cells may dictate the class selection of the adaptative immune response.
Collapse
|
research-article |
26 |
769 |
8
|
Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999; 96:1036-41. [PMID: 9927689 PMCID: PMC15346 DOI: 10.1073/pnas.96.3.1036] [Citation(s) in RCA: 769] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) are unique in their ability to stimulate T cells and initiate adaptive immunity. Injection of mice with the cytokine Flt3-ligand (FL) dramatically expands mature lymphoid and myeloid-related DC subsets. In contrast, injection of a polyethylene glycol-modified form of granulocyte/macrophage colony-stimulating factor (GM-CSF) into mice only expands the myeloid-related DC subset. These DC subsets differ in the cytokine profiles they induce in T cells in vivo. The lymphoid-related subset induces high levels of the Th1 cytokines interferon gamma and interleukin (IL)-2 but little or no Th2 cytokines. In contrast, the myeloid-related subset induces large amounts of the Th2 cytokines IL-4 and IL-10, in addition to interferon gamma and IL-2. FL- or GM-CSF-treated mice injected with soluble ovalbumin display dramatic increases in antigen-specific antibody titers, but the isotype profiles seem critically dependent on the cytokine used. Although FL treatment induces up to a 10, 000-fold increase in ovalbumin-specific IgG2a and a more modest increase in IgG1 titers, GM-CSF treatment favors a predominantly IgG1 response with little increase in IgG2a levels. These data suggest that distinct DC subsets have strikingly different influences on the type of immune response generated in vivo and may thus be targets for pharmacological intervention.
Collapse
|
research-article |
26 |
769 |
9
|
Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 2005; 434:1035-40. [PMID: 15815647 DOI: 10.1038/nature03547] [Citation(s) in RCA: 732] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 03/14/2005] [Indexed: 11/09/2022]
Abstract
Robust type-I interferon (IFN-alpha/beta) induction in plasmacytoid dendritic cells, through the activation of Toll-like receptor 9 (TLR9), constitutes a critical aspect of immunity. It is absolutely dependent on the transcription factor IRF-7, which interacts with and is activated by the adaptor MyD88. How plasmacytoid dendritic cells, but not other cell types (such as conventional dendritic cells), are able to activate the MyD88-IRF-7-dependent IFN induction pathway remains unknown. Here we show that the spatiotemporal regulation of MyD88-IRF-7 signalling is critical for a high-level IFN induction in response to TLR9 activation. The IFN-inducing TLR9 ligand, A/D-type CpG oligodeoxynucleotide (CpG-A), is retained for long periods in the endosomal vesicles of plasmacytoid dendritic cells, together with the MyD88-IRF-7 complex. However, in conventional dendritic cells, CpG-A is rapidly transferred to lysosomal vesicles. We further show that conventional dendritic cells can also mount a robust IFN induction if CpG-A is manipulated for endosomal retention using a cationic lipid. This strategy also allows us to demonstrate endosomal activation of the IFN pathway by the otherwise inactive TLR9 ligand B/K-type oligodeoxynucleotide (CpG-B). Thus, our study offers insights into the regulation of TLR9 signalling in space, potentially suggesting a new avenue for therapeutic intervention.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
732 |
10
|
Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999; 11:753-61. [PMID: 10626897 DOI: 10.1016/s1074-7613(00)80149-1] [Citation(s) in RCA: 663] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigated the differentiation and trafficking of inflammatory monocytes that phagocytosed subcutaneously injected fluorescent microspheres. As expected, most of the monocytes became microsphere+ macrophages, which remained in subcutaneous tissue. However, about 25% of latex+ cells migrated to the T cell area of draining lymph nodes, where they expressed dendritic cell (DC)-restricted markers and high levels of costimulatory molecules. Microsphere-transporting cells were distinct from resident skin DCs, and this transport was reduced by more than 85% in monocyte-deficient osteopetrotic mice. Thus, a substantial minority of inflammatory monocytes carry phagocytosed particles to lymph nodes and differentiate into DCs.
Collapse
|
|
26 |
663 |
11
|
Kaliński P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. IMMUNOLOGY TODAY 1999; 20:561-7. [PMID: 10562707 DOI: 10.1016/s0167-5699(99)01547-9] [Citation(s) in RCA: 655] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
Review |
26 |
655 |
12
|
MacDonald KPA, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DNJ. Characterization of human blood dendritic cell subsets. Blood 2002; 100:4512-20. [PMID: 12393628 DOI: 10.1182/blood-2001-11-0097] [Citation(s) in RCA: 559] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells for stimulating immune responses and they are now being investigated in clinical settings. Although defined as lineage-negative (Lin(-)) HLA-DR(+) cells, significant heterogeneity in these preparations is apparent, particularly in regard to the inclusion or exclusion of CD14(+), CD16(+), and CD2(+) cells. This study used flow cytometry and a panel of monoclonal antibodies (mAbs), including reagents from the 7th Leukocyte Differentiation Antigen Workshop, to define the cellular composition of 2 standardized peripheral blood mononuclear cell (PBMCs)-derived Lin(-) HLA-DR(+) preparations. Lin(-) cells were prepared from PBMCs by depletion with CD3, CD14, CD19, CD11b, and either CD16 or CD56 mAbs. Analysis of the CD16-replete preparations divided the Lin(-) HLA-DR(+) population into 5 nonoverlapping subsets (mean +/- 1 SD): CD123 (mean = 18.3% +/- 9.7%), CD1b/c (18.6% +/- 7.6%), CD16 (49.6% +/- 8.5%), BDCA-3 (2.7% +/- 1.4%), and CD34 (5.0% +/- 2.4%). The 5 subsets had distinct phenotypes when compared with each other, monocytes, and monocyte-derived DCs (MoDCs). The CD85 family, C-type lectins, costimulatory molecules, and differentiation/activation molecules were also expressed differentially on the 5 Lin(-) HLA-DR(+) subsets, monocytes, and MoDCs. The poor viability of CD123(+) DCs in vitro was confirmed, but the CD16(+) CD11c(+) DC subset also survived poorly. Finally, the individual subsets used as stimulators in allogeneic mixed leukocyte reactions were ranked by their allostimulatory capacity as CD1b/c > CD16 > BDCA-3 > CD123 > CD34. These data provide an opportunity to standardize the DC populations used for future molecular, functional and possibly even therapeutic studies.
Collapse
|
Comparative Study |
23 |
559 |
13
|
Nakano H, Yanagita M, Gunn MD. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001; 194:1171-8. [PMID: 11602645 PMCID: PMC2193516 DOI: 10.1084/jem.194.8.1171] [Citation(s) in RCA: 558] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human plasmacytoid dendritic cells (pDCs) are major producers of IFNalpha, are activated by CpG motifs, and are believed to enter lymph nodes (LNs) via L-selectin dependent extravasation across high endothelial venules. To identify a similar murine DC type, CD11c(+) cells in the LNs of L-selectin-deficient and control BALB/c mice were compared, revealing a population of CD11c(+)CD11b(-) cells that is reduced 85% in the LNs of L-selectin-deficient mice. These cells are Gr-1(+)B220(+)CD19(-), either CD4(+) or CD8(+), and localize within T cell zones of LNs. Freshly isolated CD11c(+)Gr-1(+) cells express major histocompatibility complex class II at low levels, display a plasmacytoid morphology, and survive poorly in culture. Their survival is increased and they develop a DC-like morphology in interleukin 3 and CpG. Like human pDCs, CD11c(+)Gr-1(+) cells stimulate T cell proliferation after activation with CpG and produce IFNalpha after stimulation with influenza virus. These cells also display a strain-specific variation in frequency, being fivefold increased in the LNs of BALB/c relative to C57BL/6 mice. These CD11c(+)CD11b(-)B220(+)Gr-1(+) cells appear to be the murine equivalent of human pDCs.
Collapse
|
research-article |
24 |
558 |
14
|
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, Pedro de Magalhães J, Larbi A. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep 2019; 26:1627-1640.e7. [PMID: 30726743 PMCID: PMC6367568 DOI: 10.1016/j.celrep.2019.01.041] [Citation(s) in RCA: 545] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023] Open
Abstract
The molecular characterization of immune subsets is important for designing effective strategies to understand and treat diseases. We characterized 29 immune cell types within the peripheral blood mononuclear cell (PBMC) fraction of healthy donors using RNA-seq (RNA sequencing) and flow cytometry. Our dataset was used, first, to identify sets of genes that are specific, are co-expressed, and have housekeeping roles across the 29 cell types. Then, we examined differences in mRNA heterogeneity and mRNA abundance revealing cell type specificity. Last, we performed absolute deconvolution on a suitable set of immune cell types using transcriptomics signatures normalized by mRNA abundance. Absolute deconvolution is ready to use for PBMC transcriptomic data using our Shiny app (https://github.com/giannimonaco/ABIS). We benchmarked different deconvolution and normalization methods and validated the resources in independent cohorts. Our work has research, clinical, and diagnostic value by making it possible to effectively associate observations in bulk transcriptomics data to specific immune subsets.
Collapse
|
research-article |
6 |
545 |
15
|
Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199:9-26. [PMID: 15233723 DOI: 10.1111/j.0105-2896.2004.00142.x] [Citation(s) in RCA: 523] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-presentation involves the uptake and processing of exogenous antigens within the major histocompatibility complex (MHC) class I pathway. This process is primarily performed by dendritic cells (DCs), which are not a single cell type but may be divided into several distinct subsets. Those expressing CD8alpha together with CD205, found primarily in the T-cell areas of the spleen and lymph nodes, are the major subset responsible for cross-presenting cellular antigens. This ability is likely to be important for the generation of cytotoxic T-cell immunity to a variety of antigens, particularly those associated with viral infection, tumorigenesis, and DNA vaccination. At present, it is unclear whether the CD8alpha-expressing DC subset captures antigen directly from target cells or obtains it indirectly from intermediary DCs that traffic from peripheral sites. In this review, we examine the molecular basis for cross-presentation, discuss the role of DC subsets, and examine the contribution of this process to immunity, with some emphasis on DNA vaccination.
Collapse
|
Review |
21 |
523 |
16
|
Süss G, Shortman K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 1996; 183:1789-96. [PMID: 8666935 PMCID: PMC2192509 DOI: 10.1084/jem.183.4.1789] [Citation(s) in RCA: 503] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DC), the most efficient antigen-presenting cells, are well equipped for activation of naive CD4+ T cells by their expression of high levels of major histocompatibility complex and costimulator molecules. We now demonstrate that some DC are equally well equipped for killing these same T cells. Murine splenic DC consist of both conventional CD8alpha- DC and a major population of CD8alpha+ DC. Whereas CD8- DC induce a vigorous proliferative response in CD4 T cells, CD8+ DC induce a lesser response that is associated with marked T cell apoptosis. By using various mixtures of T cells and DC from Fas-mutant lpr/lpr mice and Fas-ligand (FasL) mutant gld/gld mice, we show this death is due to interaction of Fas on activated T cells with FasL on CD8+ DC. Furthermore, we show by direct surface staining that CD8+ DC, but not CD8- DC, express FasL at high levels. These findings indicate that FasL+ CD8+ DC are a specialized subgroup of DC with a role in the regulation of the response of primary peripheral T cells.
Collapse
|
research-article |
29 |
503 |
17
|
Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, Qin XF, Liu YJ, Gilliet M. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. ACTA ACUST UNITED AC 2007; 204:105-15. [PMID: 17200410 PMCID: PMC2118437 DOI: 10.1084/jem.20061660] [Citation(s) in RCA: 485] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although there is evidence for distinct roles of myeloid dendritic cells (DCs [mDCs]) and plasmacytoid pre-DCs (pDCs) in regulating T cell–mediated adaptive immunity, the concept of functional DC subsets has been questioned because of the lack of a molecular mechanism to explain these differences. In this study, we provide direct evidence that maturing mDCs and pDCs express different sets of molecules for T cell priming. Although both maturing mDCs and pDCs upregulate the expression of CD80 and CD86, only pDCs upregulate the expression of inducible costimulator ligand (ICOS-L) and maintain high expression levels upon differentiation into mature DCs. High ICOS-L expression endows maturing pDCs with the ability to induce the differentiation of naive CD4 T cells to produce interleukin-10 (IL-10) but not the T helper (Th)2 cytokines IL-4, -5, and -13. These IL-10–producing T cells are T regulatory cells, and their generation by ICOS-L is independent of pDC-driven Th1 and Th2 differentiation, although, in the later condition, some contribution from endogenous IL-4 cannot be completely ruled out. Thus, in contrast to mDCs, pDCs are poised to express ICOS-L upon maturation, which leads to the generation of IL-10–producing T regulatory cells. Our findings demonstrate that mDC and pDCs are intrinsically different in the expression of costimulatory molecules that drive distinct types of T cell responses.
Collapse
|
Journal Article |
18 |
485 |
18
|
Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 2007; 7:543-55. [PMID: 17589544 DOI: 10.1038/nri2103] [Citation(s) in RCA: 480] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) comprise several subsets, and their roles in the presentation of antigens derived from pathogens, vaccines and self tissues are now beginning to be elucidated. Differences in location, life cycle and intrinsic abilities to capture, process and present antigens on their MHC class I and class II molecules enable each DC subset to have distinct roles in immunity to infection and in the maintenance of self tolerance. Unexpected interactions among DC subsets have also been revealed. These interactions, which allow the integration of the intrinsic abilities of different DC types, enhance the ability of the DC network to respond to multiple scenarios of infection.
Collapse
|
Review |
18 |
480 |
19
|
Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA. Classification of low quality cells from single-cell RNA-seq data. Genome Biol 2016; 17:29. [PMID: 26887813 PMCID: PMC4758103 DOI: 10.1186/s13059-016-0888-1] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/27/2016] [Indexed: 11/10/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has broad applications across biomedical research. One of the key challenges is to ensure that only single, live cells are included in downstream analysis, as the inclusion of compromised cells inevitably affects data interpretation. Here, we present a generic approach for processing scRNA-seq data and detecting low quality cells, using a curated set of over 20 biological and technical features. Our approach improves classification accuracy by over 30 % compared to traditional methods when tested on over 5,000 cells, including CD4+ T cells, bone marrow dendritic cells, and mouse embryonic stem cells.
Collapse
|
research-article |
9 |
444 |
20
|
Pooley JL, Heath WR, Shortman K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5327-30. [PMID: 11313367 DOI: 10.4049/jimmunol.166.9.5327] [Citation(s) in RCA: 444] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse spleen contains three distinct mature dendritic cell (DC) populations (CD4(+)8(-), CD4(-)8(-), and CD4(-)8(+)) which retain a capacity to take up particulate and soluble AGS: Although the three splenic DC subtypes showed similar uptake of injected soluble OVA, they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells. For class II MHC-restricted presentation to CD4 T cells, the CD8(-) DC subtypes were more efficient, but for class I MHC-restricted presentation to CD8 T cells, the CD8(+) DC subtype was far more effective. This differential persisted when the DC were activated with LPS. The CD8(+) DC are therefore specialized for in vivo cross-presentation of exogenous soluble Ags into the class I MHC presentation pathway.
Collapse
|
Comparative Study |
24 |
444 |
21
|
Iwasaki A, Kelsall BL. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 2000; 191:1381-94. [PMID: 10770804 PMCID: PMC2193144 DOI: 10.1084/jem.191.8.1381] [Citation(s) in RCA: 443] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b(+) myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8alpha(+) lymphoid DCs are present in the T cell-rich interfollicular region (IFR). DCs that lack expression of CD8alpha or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3alpha mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3alpha. These data support a distinct role for MIP-3alpha/CCR6 in recruitment of CD11b(+) DCs toward the mucosal surfaces and for MIP-3beta/CCR7 in attraction of CD8alpha(+) DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections.
Collapse
|
research-article |
25 |
443 |
22
|
Pileri SA, Grogan TM, Harris NL, Banks P, Campo E, Chan JKC, Favera RD, Delsol G, De Wolf-Peeters C, Falini B, Gascoyne RD, Gaulard P, Gatter KC, Isaacson PG, Jaffe ES, Kluin P, Knowles DM, Mason DY, Mori S, Müller-Hermelink HK, Piris MA, Ralfkiaer E, Stein H, Su IJ, Warnke RA, Weiss LM. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 2002; 41:1-29. [PMID: 12121233 DOI: 10.1046/j.1365-2559.2002.01418.x] [Citation(s) in RCA: 440] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neoplasms of histiocytes and dendritic cells are rare, and their phenotypic and biological definition is incomplete. Seeking to identify antigens detectable in paraffin-embedded sections that might allow a more complete, rational immunophenotypic classification of histiocytic/dendritic cell neoplasms, the International Lymphoma Study Group (ILSG) stained 61 tumours of suspected histiocytic/dendritic cell type with a panel of 15 antibodies including those reactive with histiocytes (CD68, lysozyme (LYS)), Langerhans cells (CD1a), follicular dendritic cells (FDC: CD21, CD35) and S100 protein. This analysis revealed that 57 cases (93%) fit into four major immunophenotypic groups (one histiocytic and three dendritic cell types) utilizing six markers: CD68, LYS, CD1a, S100, CD21, and CD35. The four (7%) unclassified cases were further classifiable into the above four groups using additional morphological and ultrastructural features. The four groups then included: (i) histiocytic sarcoma (n=18) with the following phenotype: CD68 (100%), LYS (94%), CD1a (0%), S100 (33%), CD21/35 (0%). The median age was 46 years. Presentation was predominantly extranodal (72%) with high mortality (58% dead of disease (DOD)). Three had systemic involvement consistent with 'malignant histiocytosis'; (ii) Langerhans cell tumour (LCT) (n=26) which expressed: CD68 (96%), LYS (42%), CD1a (100%), S100 (100%), CD21/35 (0%). There were two morphological variants: cytologically typical (n=17) designated LCT; and cytologically malignant (n=9) designated Langerhans cell sarcoma (LCS). The LCS were often not easily recognized morphologically as LC-derived, but were diagnosed based on CD1a staining. LCT and LCS differed in median age (33 versus 41 years), male:female ratio (3.7:1 versus 1:2), and death rate (31% versus 50% DOD). Four LCT patients had systemic involvement typical of Letterer-Siwe disease; (iii) follicular dendritic cell tumour/sarcoma (FDCT) (n=13) which expressed: CD68 (54%), LYS (8%), CD1a (0%), S100 (16%), FDC markers CD21/35 (100%), EMA (40%). These patients were adults (median age 65 years) with predominantly localized nodal disease (75%) and low mortality (9% DOD); (iv) interdigitating dendritic cell tumour/sarcoma (IDCT) (n=4) which expressed: CD68 (50%), LYS (25%), CD1a (0%), S100 (100%), CD21/35 (0%). The patients were adults (median 71 years) with localized nodal disease (75%) without mortality (0% DOD). In conclusion, definitive immunophenotypic classification of histiocytic and accessory cell neoplasms into four categories was possible in 93% of the cases using six antigens detected in paraffin-embedded sections. Exceptional cases (7%) were resolvable when added morphological and ultrastructural features were considered. We propose a classification combining immunophenotype and morphology with five categories, including Langerhans cell sarcoma. This simplified scheme is practical for everyday diagnostic use and should provide a framework for additional investigation of these unusual neoplasms.
Collapse
|
|
23 |
440 |
23
|
Edwards AD, Diebold SS, Slack EMC, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 2003; 33:827-33. [PMID: 12672047 DOI: 10.1002/eji.200323797] [Citation(s) in RCA: 439] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLR) recognize microbial and viral patterns and activate dendritic cells (DC). TLR distribution among human DC subsets is heterogeneous: plasmacytoid DC (PDC) express TLR1, 7 and 9, while other DC types do not express TLR9 but express other TLR. Here, we report that mRNA for most TLR is expressed at similar levels by murine splenic DC sub-types, including PDC, but that TLR3 is preferentially expressed by CD8 alpha(+) DC while TLR5 and TLR7 are selectively absent from the same subset. Consistent with the latter, TLR7 ligand activates CD8 alpha(-) DC and PDC, but not CD8 alpha(+) DC as measured by survival ex vivo, up-regulation of surface markers and production of IL-12p40. These data suggest that the dichotomy in TLR expression between plasmacytoid and non-plasmacytoid DC is not conserved between species. However, lack of TLR7 expression could restrict the involvement of CD8 alpha(+) DC in recognition of certain mouse pathogens.
Collapse
|
|
22 |
439 |
24
|
Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I, Hohl TM, Flavell RA, Littman DR, Pamer EG. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012; 36:276-87. [PMID: 22306017 PMCID: PMC3288454 DOI: 10.1016/j.immuni.2011.12.011] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/31/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
Abstract
Microbial penetration of the intestinal epithelial barrier triggers inflammatory responses that include induction of the bactericidal C-type lectin RegIIIγ. Systemic administration of flagellin, a bacterial protein that stimulates Toll-like receptor 5 (TLR5), induces epithelial expression of RegIIIγ and protects mice from intestinal colonization with antibiotic-resistant bacteria. Flagellin-induced RegIIIγ expression is IL-22 dependent, but how TLR signaling leads to IL-22 expression is incompletely defined. By using conditional depletion of lamina propria dendritic cell (LPDC) subsets, we demonstrated that CD103(+)CD11b(+) LPDCs, but not monocyte-derived CD103(-)CD11b(+) LPDCs, expressed high amounts of IL-23 after bacterial flagellin administration and drove IL-22-dependent RegIIIγ production. Maximal expression of IL-23 subunits IL-23p19 and IL-12p40 occurred within 60 min of exposure to flagellin. IL-23 subsequently induced a burst of IL-22 followed by sustained RegIIIγ expression. Thus, CD103(+)CD11b(+) LPDCs, in addition to promoting long-term tolerance to ingested antigens, also rapidly produce IL-23 in response to detection of flagellin in the lamina propria.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
386 |
25
|
Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I, Cella M, Lande R, Uzé G. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 2004; 34:796-805. [PMID: 14991609 DOI: 10.1002/eji.200324610] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In humans, the type I interferon (IFN) family consists of 13 IFN-alpha subtypes, IFN-beta and IFN-omicron the newly discovered IFN-like family consists of IFN-lambda1, -lambda2 and -lambda3. We have investigated the expression of type I and lambda IFN genes following virus infections or Toll-like receptor (TLR) triggering in monocyte-derived DC (MDDC) and plasmacytoid DC (pDC). We found that all IFN-alpha, -beta, -omicron and -lambda subtypes are expressed in influenza-virus-infected MDDC or pDC. Conversely, differential type I IFN gene transcription was induced in MDDC and pDC stimulated by specific TLR agonists. TLR-9 stimulation by CpG DNA induced the expression of all IFN-alpha, -beta, -omicron and -lambda subtypes in pDC, whereas TLR-4 stimulation by LPS, or TLR-3 stimulation by poly I:C, induced only IFN-beta and IFN-lambda gene expression in MDDC. The expression pattern of IFN regulatory factor (IRF)-5 and IRF-7 in MDDC and pDC was also determined. IRF-5 was constitutively expressed in the two DC subsets whereas IRF-7 was constitutive in pDC but its expression was induced along MDDC maturation. Overall, our data indicate that the coordinated expression of IFN-lambda with IFN-beta would be of crucial importance for the maturation of DC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
377 |