Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals A method for project portfolio risk assessment considering risk interdependencies – a network perspective

2022 ◽  
Vol 196 ◽  
pp. 948-955
Author(s):  
Camilo Mican ◽  
Gabriela Fernandes ◽  
Madalena Araújo
2017 ◽  
Vol 47 (1) ◽  
pp. 87-104 ◽  
Author(s):  
Luis Sousa ◽  
Vitor Silva ◽  
Mário Marques ◽  
Helen Crowley

Author(s):  
Inés Jiménez ◽  
Andrés Mora-Valencia ◽  
Trino-Manuel Ñíguez ◽  
Javier Perote

The semi-nonparametric (SNP) modeling of the return distribution has been proved to be a flexible and accurate methodology for portfolio risk management that allows two-step estimation of the dynamic conditional correlation (DCC) matrix. For this SNP-DCC model, we propose a stepwise procedure to compute pairwise conditional correlations under bivariate marginal SNP distributions, overcoming the curse of dimensionality. The procedure is compared to the assumption of Dynamic Equicorrelation (DECO), which is a parsimonious model when correlations among the assets are not significantly different but requires joint estimation of the multivariate SNP model. The risk assessment of both methodologies is tested for a portfolio on cryptocurrencies by implementing backtesting techniques and for different risk measures: Value-at-Risk, Expected Shortfall and Median Shortfall. The results support our proposal showing that the SNP-DCC model has better performance for a smaller confidence level than the SNP-DECO model, although both models perform similarly for higher confidence levels.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Libiao Bai ◽  
Huijing Shi ◽  
Shuyun Kang ◽  
Bingbing Zhang

PurposeComprehensive project portfolio risk (PPR) analysis is essential for the success and sustainable development of project portfolios (PPs). However, project interdependency creates complexity for PPR analysis. In this study, considering the interdependency effect among projects, the authors develop a quantitative evaluation model to analyze PPR based on a fuzzy Bayesian network.Design/methodology/approachIn this paper, the primary purpose is to comprehensively evaluate project portfolio risk considering the interdependency effect using a systematical model. Accordingly, a fuzzy Bayesian network (FBN) is developed based on the existing studies. Specifically, first, the risks in project portfolios are identified from the project interdependencies perspective. Second, a fuzzy Bayesian network is adopted to model and quantify the interaction relationships among risks. Finally, the model is implemented to analyze the occurrence situation and characteristics of risks.FindingsThe interdependency effect can lead to high-stake risks, including weak financial liquidity, a lack of cross-project members and project priority imbalance. Furthermore, project schedule risks and inconsistency between product supply and market demand are relatively sensitive and should also be prioritized. Also, the validity of this risk evaluation model has been proved.Originality/valueThe findings identify the most sensitive risks for guaranteeing portfolio implementation and reveal interdependency effect can trigger some specific risks more often. This study proposes for the first time to measure and analyze project portfolio risk by a systematical model. It can help systematically assess and manage the complicated and interdependent risks associated with project portfolios.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Libiao Bai ◽  
Kaimin Zhang ◽  
Huijing Shi ◽  
Min An ◽  
Xiao Han

Resource risk caused by specific resource sharing or competition among projects due to resource constraints is a major issue in project portfolio management, which challenges the application of risk analysis methods effectively. This paper presents a methodology by using a fuzzy Bayesian network to assess the project portfolio resource risk, determine critical resource risk factors, and propose risk-reduction strategies. In this method, the project portfolio resource risk factors are first identified by taking project interdependency into consideration, and then the Bayesian network model is developed to analyze the risk level of the identified risk factors in which expert judgments and fuzzy set theory are integrated to determine the probabilities of all risk factors to deal with incomplete risk data and information. To reduce the subjectivity of expert judgments, the expert weights are determined by combining experts’ background and reliability degree of expert judgments. A numerical analysis is used to demonstrate the application of the proposed methodology. The results show that project portfolio resource risks can be analyzed effectively and efficiently. Furthermore, “poor communication and cooperation among projects,” “capital difficulty,” and “lack of sharing technology among projects” are considered the leading factors of the project portfolio resource risk. Risk-reduction strategic decisions based on the results of risk assessment can be made, which provide project managers with a useful method or tool to manage project risks.


Export Citation Format

Share Document