The effect of the preceding masking noise on monaural and binaural release from masking
When a target tone is preceded by a noise, the threshold for target detection can be increased or decreased depending on the type of a preceding masker. The effect of preceding masker to the following sound can be interpreted as either the result of adaptation at the periphery or at the system level. To disentangle these, we investigated the time constant of adaptation by varying the length of the preceding masker. For inducing various masking conditions, we designed stimuli that can induce masking release. Comodulated masking noise and binaural cues can facilitate detecting a target sound from noise. These cues induce a decrease in detection thresholds, quantified as comodulation masking release (CMR) and binaural masking level difference (BMLD), respectively. We hypothesized that if the adaptation results from the top-down processing, both CMR and BMLD will be affected with increased length of the preceding masker. We measured CMR and BMLD when the length of preceding maskers varied from 0 (no preceding masker) to 500 ms. Results showed that CMR was more affected with longer preceding masker from 100 ms to 500 ms while the preceding masker did not affect BMLD. In this study, we suggest that the adaptation to preceding masking sound may arise from low level (e.g. cochlear nucleus, CN) rather than the temporal integration by the higher-level processing.