Background incidence rates of adverse events of special interest related to COVID-19 vaccines in Ontario, Canada, 2015 to 2020, to inform COVID-19 vaccine safety surveillance
Background: Background incidence rates are critical in pharmacovigilance to facilitate identification of vaccine safety signals. We estimated background incidence rates of nine adverse events of special interest related to COVID-19 vaccines in Ontario, Canada. Methods: We conducted a population-based retrospective observational study using linked health administrative databases for hospitalizations and emergency department visits among Ontario residents. We estimated incidence rates of Bells palsy, idiopathic thrombocytopenia, febrile convulsions, acute disseminated encephalomyelitis, myocarditis, pericarditis, Kawasaki disease, Guillain-Barre syndrome, and transverse myelitis during five pre-pandemic years (2015-2019) and 2020. Results: The average annual population was 14 million across all age groups with 51% female. The pre-pandemic mean annual rates per 100,000 population during 2015-2019 were 43.9 for idiopathic thrombocytopenia, 27.8 for Bells palsy, 25.0 for febrile convulsions, 22.8 for acute disseminated encephalomyelitis, 11.3 for myocarditis/pericarditis, 8.6 for pericarditis, 2.9 for myocarditis, 1.9 for Guillain-Barre syndrome, 1.7 for transverse myelitis, and 1.6 for Kawasaki disease. Females had higher rates of acute disseminated encephalomyelitis and transverse myelitis while males had higher rates of myocarditis, pericarditis, and Guillain-Barre syndrome. Bells palsy, acute disseminated encephalomyelitis, and Guillain-Barre syndrome increased with age. The mean rates of myocarditis and/or pericarditis increased with age up to 79 years; males had higher rates than females: from 12-59 years for myocarditis and 12 years and older for pericarditis. Febrile convulsions and Kawasaki disease were predominantly childhood diseases and generally decreased with age. Conclusions: Our estimated background rates will permit estimating numbers of expected events for these conditions and facilitate detection of potential safety signals following COVID-19 vaccination.