Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Simulation Model of PV Module Built from Point-Focusing Fresnel Radiation Concentrators and Three-Junction High-Performance Cells

2022 ◽  
Vol 12 (2) ◽  
pp. 806
Author(s):  
Mariusz T. Sarniak

The silicon photovoltaic modules that dominate the market today are constantly being modified, but at the same time, the search for new, more efficient design solutions is underway. The study examined a less popular photovoltaic module built from point-focusing Fresnel radiation concentrators and high-efficiency three-junction cells. The advantage of this type of module is its high overall efficiency, exceeding 30%. The disadvantage is that they require biaxial precision tracking mechanisms because even a small deviation of the direction of direct solar radiation from the perpendicular to the module’s surface causes a large and abrupt drop in efficiency. This type of photovoltaic module structure is often also marked with the symbol C3PV. A mathematical model and simulation calculations were carried out in the Matlab/Simulink package for the C3PV module—the CX-75/200 model based on the “Solar Cell” component. The concentration of direct solar radiation was taken into account. For the module under consideration, experimental and simulation results show the necessity of accurate positioning concerning the direction of solar radiation—deviation of the radiation angle by about 5° causes a very high power loss (by about 92%).

2018 ◽  
Vol 8 (10) ◽  
pp. 1752 ◽  
Author(s):  
Hae Cha ◽  
Byeong Bhang ◽  
So Park ◽  
Jin Choi ◽  
Hyung Ahn

A bifacial solar module has a structure that allows the rear electrode to be added to the existing silicon photovoltaic module structure. Thus, it can capture energy from both the front and rear sides of the module. In this paper, modeling is suggested to estimate the amount of energy generated from the rear of the bifacial photovoltaic module. After calculating the amount of irradiance from the rear side, the estimated power generation is compared with the real power output from the rear side of the module. The experiments were performed using four different environments with different albedos. The theoretical prediction of the model shows a maximum of 5% and average of 1.86% error in the measurement data. Based on the nature of the bifacial solar module, which receives additional irradiance from the rear side, this study compared the output amounts with respect to different rear environments. Recently, installation of floating Photovoltaic has been increasing. As the reflection of irradiation from the water surface occurs, the positive influence of the installation with the bifacial photovoltaic can be expected. We are confident that this research will contribute to zero energy construction by designing systems based on bifacial PV module with high performance ratio when applying solar power in a microgrid environment, which is the future energy.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


2022 ◽  
Vol 961 (1) ◽  
pp. 012065
Author(s):  
“Miqdam T Chaichan ◽  
Muhaned A H Zaidi ◽  
Hussein A. Kazem ◽  
K. Sopian

Abstract Today, photovoltaic modules have become accepted by the public and scientists in the production of clean electricity and as a possible alternative to electricity produced from fossil fuels. These modules suffer from a deterioration in their electrical efficiency as a result of their high temperature. Several researchers have proposed the use of high-efficiency hybrid photovoltaic (PV/T) systems that can cool PV modules and also produce hot water. Improving the PV modules’ electrical efficiency increases the investment attraction and commercialization of this technology. The possibility of restoring the electrical efficiency of the photovoltaic panel that was lost due to its high temperature was investigated in this study. A PV/T system designed to operate with a paraffin-filled thermal tank attached to the PV module was used. Inside the paraffin is a heat exchanger that circulates inside a nanofluid. This design is adopted to cool down the PV module temperature. The study was carried out in the climatic conditions of the month of May in the city of Baghdad - Iraq. The proposed PV/T system’s electrical efficiency was compared with similar systems from the literature. The proposed system has achieved an obvious enhancement as its electrical efficiency was 13.7%.


Author(s):  
Waithiru Charles Lawrence K. ◽  
Jong Rok Lim ◽  
Chang Sub Won ◽  
Hyung Keun Ahn

Rapid reduction in the $/Wp prices of photovoltaic (solar PV) energy has been proceeded recently, resulting in near exponential deployments with an annual capacity of 200 GW expected by 2020. Achieving high efficiency is necessary for many solar manufacturers to break even. In addition, new innovative installation methods are emerging to complement the improvement of system performance. The floating PV (FPV) solar market space has emerged over the past decade as a method for utilizing the cool ambient environment of the FPV system near the water surface to boost the power output performance of the PV module and ultimately the yield of the PV system. PV module temperature, which is the most critical factor affecting efficiency, ultimately governs the effective performance of solar cells, module, and all semiconductor materials in general. We propose the first ever electrical efficiency equations ( η c,FP V 1 and η c,FP V 2 ) for an FPV module installed on water based on two new predictions of FPV temperature operation models (Tm1 and Tm2), whose coefficients are derived from FPV site data with MATLAB. The theoretical prediction of module temperature shows respective errors of 2% and 4% when compared to the FPVM measured data.


2016 ◽  
Vol 11 (9) ◽  
pp. 764
Author(s):  
Lella Aicha Ayadi ◽  
Nihel Neji ◽  
Hassen Loukil ◽  
Mouhamed Ali Ben Ayed ◽  
Nouri Masmoudi

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1034
Author(s):  
Ching-Chien Huang ◽  
Chin-Chieh Mo ◽  
Guan-Ming Chen ◽  
Hsiao-Hsuan Hsu ◽  
Guo-Jiun Shu

In this work, an experiment was carried out to investigate the preparation condition of anisotropic, Fe-deficient, M-type Sr ferrite with optimum magnetic and physical properties by changing experimental parameters, such as the La substitution amount and little additive modification during fine milling process. The compositions of the calcined ferrites were chosen according to the stoichiometry LaxSr1-xFe12-2xO19, where M-type single-phase calcined powder was synthesized with a composition of x = 0.30. The effect of CaCO3, SiO2, and Co3O4 inter-additives on the Sr ferrite was also discussed in order to obtain low-temperature sintered magnets. The magnetic properties of Br = 4608 Gauss, bHc = 3650 Oe, iHc = 3765 Oe, and (BH)max = 5.23 MGOe were obtained for Sr ferrite hard magnets with low cobalt content at 1.7 wt%, which will eventually be used as high-end permanent magnets for the high-efficiency motor application in automobiles with Br > 4600 ± 50 G and iHc > 3600 ± 50 Oe.


2021 ◽  
Vol 12 (11) ◽  
pp. 1692-1699
Author(s):  
Ji Hye Lee ◽  
Jinhyo Hwang ◽  
Chai Won Kim ◽  
Amit Kumar Harit ◽  
Han Young Woo ◽  
...  

New polystyrene-based polymers with high π-extended hole transport pendants were synthesized to obtain a low turn-on voltage and high efficiency in solution-processed green TADF-OLEDs.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3716
Author(s):  
Francesco Causone ◽  
Rossano Scoccia ◽  
Martina Pelle ◽  
Paola Colombo ◽  
Mario Motta ◽  
...  

Cities and nations worldwide are pledging to energy and carbon neutral objectives that imply a huge contribution from buildings. High-performance targets, either zero energy or zero carbon, are typically difficult to be reached by single buildings, but groups of properly-managed buildings might reach these ambitious goals. For this purpose we need tools and experiences to model, monitor, manage and optimize buildings and their neighborhood-level systems. The paper describes the activities pursued for the deployment of an advanced energy management system for a multi-carrier energy grid of an existing neighborhood in the area of Milan. The activities included: (i) development of a detailed monitoring plan, (ii) deployment of the monitoring plan, (iii) development of a virtual model of the neighborhood and simulation of the energy performance. Comparisons against early-stage energy monitoring data proved promising and the generation system showed high efficiency (EER equal to 5.84), to be further exploited.


2021 ◽  
Vol 7 (10) ◽  
pp. eabe8130
Author(s):  
Shangshang Chen ◽  
Xun Xiao ◽  
Hangyu Gu ◽  
Jinsong Huang

Perovskite-based electronic materials and devices such as perovskite solar cells (PSCs) have notoriously bad reproducibility, which greatly impedes both fundamental understanding of their intrinsic properties and real-world applications. Here, we report that organic iodide perovskite precursors can be oxidized to I2 even for carefully sealed precursor powders or solutions, which markedly deteriorates the performance and reproducibility of PSCs. Adding benzylhydrazine hydrochloride (BHC) as a reductant into degraded precursor solutions can effectively reduce the detrimental I2 back to I−, accompanied by a substantial reduction of I3−-induced charge traps in the films. BHC residuals in perovskite films further stabilize the PSCs under operation conditions. BHC improves the stabilized efficiency of the blade-coated p-i-n structure PSCs to a record value of 23.2% (22.62 ± 0.40% certified by National Renewable Energy Laboratory), and the high-efficiency devices have a very high yield. A stabilized aperture efficiency of 18.2% is also achieved on a 35.8-cm2 mini-module.


Export Citation Format

Share Document