Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

efficient design
Recently Published Documents


TOTAL DOCUMENTS

2528
(FIVE YEARS 517)

H-INDEX

52
(FIVE YEARS 3)

Author(s):  
Islam T. Almalkawi ◽  
Ashraf H. Al-Bqerat ◽  
Awni Itradat ◽  
Jamal N. Al-Karaki

<p>Amplifiers are widely used in signal receiving circuits, such as antennas, medical imaging, wireless devices and many other applications. However, one of the most challenging problems when building an amplifier circuit is the noise, since it affects the quality of the intended received signal in most wireless applications. Therefore, a preamplifier is usually placed close to the main sensor to reduce the effects of interferences and to amplify the received signal without degrading the signal-to-noise ratio. Although different designs have been optimized and tested in the literature, all of them are using larger than 100 nm technologies which have led to a modest performance in terms of equivalent noise charge (ENC), gain, power consumption, and response time. In contrast, we consider in this paper a new amplifier design technology trend and move towards sub 100 nm to enhance its performance. In this work, we use a pre-well-known design of a preamplifier circuit and rebuild it using 45 nm CMOS technology, which is made for the first time in such circuits. Performance evaluation shows that our proposed scaling technology, compared with other scaling technology, extremely reduces ENC of the circuit by more than 95%. The noise spectral density and time resolution are also reduced by 25% and 95% respectively. In addition, power consumption is decreased due to the reduced channel length by 90%. As a result, all of those enhancements make our proposed circuit more suitable for medical and wireless devices.</p>


2022 ◽  
Author(s):  
Amgad Rabie

Natural palmitic acid is a pivotal saturated fatty acid used in many biochemical processes occurring in humans and diverse living creatures, as it is the most common natural long-chain carboxylic acid whose unrivaled amphiphilic sperm-like skeleton with the inert single 15-C aliphatic chain (tail or carrier) and the very active one carboxyl group (head) represent a rich reactive entity and carrier for several organic/medicinal chemistry and pharmaceutics applications with respect to drug design and formulation. Derivatives of 1,3,4-oxadiazoles along with their 1,3,4-thiadiazoles and 1,2,4-triazoles analogs exhibit a broad spectrum of substantial pharmacological activities. Agreeing with the well-known hybridization principles and incorporation norms in hybrid chemistry, if a substituted nitrogenous heterocyclic aromatic nucleus of the three aforementioned kinds is straightway attached to the simple straight palmitic acid backbone at the position of the carboxyl group, the produced molecules are supposed to be very bioactive. This research work reports for the first once the efficient design/synthesis and characterization/elucidation of four one-tailed nitrogen-containing heterocyclic derivatives of palmitic acid constructure, which introduce a novel biologically-important pharmacophore having biocompatible amphiphilic sperm-shaped heteroaromatic structure.


2022 ◽  
Vol 12 (2) ◽  
pp. 806
Author(s):  
Mariusz T. Sarniak

The silicon photovoltaic modules that dominate the market today are constantly being modified, but at the same time, the search for new, more efficient design solutions is underway. The study examined a less popular photovoltaic module built from point-focusing Fresnel radiation concentrators and high-efficiency three-junction cells. The advantage of this type of module is its high overall efficiency, exceeding 30%. The disadvantage is that they require biaxial precision tracking mechanisms because even a small deviation of the direction of direct solar radiation from the perpendicular to the module’s surface causes a large and abrupt drop in efficiency. This type of photovoltaic module structure is often also marked with the symbol C3PV. A mathematical model and simulation calculations were carried out in the Matlab/Simulink package for the C3PV module—the CX-75/200 model based on the “Solar Cell” component. The concentration of direct solar radiation was taken into account. For the module under consideration, experimental and simulation results show the necessity of accurate positioning concerning the direction of solar radiation—deviation of the radiation angle by about 5° causes a very high power loss (by about 92%).


2022 ◽  
Author(s):  
Xin Jin ◽  
Guochao Zhao ◽  
Lijuan Zhao ◽  
Guocong Lin

Abstract The cutting head is the core working mechanism of the roadheader for coal-rock materials cutting. The efficient and high performance design of cutting head is the key to improve the road head digging and mining technology. In this paper, based on cutting head design theory and virtual prototype technology, we propose a computer-aided structure design and performance optimization method for cutting head. We compile the calculation code and realize the reading and storing of relevant data through Excel. In particular, to obtain more realistic cutting performance data of the cutting head, we construct a coupling model of cutting head cutting rock wall based on virtual prototype technology, and then establish a database matching structural parameters, working parameters, coal-rock properties and cutting performance through extensive simulations. Based on the method, we complete the design of EBZ220 roadheader cutting head. We show that our method can realize the fast and efficient design of cutting head, and the designed cutting head has good working performance.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 467
Author(s):  
Mario Garzón-Juan ◽  
Ana Nieto-Morote ◽  
Francisco Ruz-Vila

The Spanish Ministry of Defense is currently attempting to reduce the amount of energy that is consumed by its military bases and has therefore raised concerns about how to make their facilities more energy efficient. To fulfill this objective, the Spanish army has developed various studies and projects, as well as a technical prescription sheet that defines the thermal transmittance values of the materials that are to be used to construct the different elements of the containers that make up the temporary housing units at Spanish military camps. Both governments and private entities have developed initiatives that are aimed at improving the energy efficiency of buildings, which are classified into two groups: those aimed at the development of mandatory building codes and those that are based on voluntary certification programs. The use of passive strategies is one of the key actions that is being implemented to achieve the NZEB category, as its first requirement is to be a “very low energy consumption building”. This paper compares the energy efficiency requirements of the tents and containers that are used in military camps and the energy-efficient design requirements that are demanded by the energy efficiency standards for buildings in the civil sector. Through this comparison, we determine how energy efficient the current living spaces in military camps are in order to define strategies that can be implemented to improve the design requirements of these living spaces so to reduce the consumption and operation logistics and to improve both operability and safety in military camp facilities.


2022 ◽  
pp. 1-1
Author(s):  
Yong Lim ◽  
Qinglai Liu ◽  
Paulo S. R. Diniz ◽  
Tapio Saramaki
Keyword(s):  

2021 ◽  
Vol 33 (6) ◽  
pp. 287-292
Author(s):  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Van Phu Dang ◽  
Dong Hyawn Kim

Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.


Author(s):  
Mykyta Vorobiov ◽  
Volodymyr Zgurskyi ◽  
Alexey Prokofiev ◽  
Ruslan Gubatyk

The high efficient design of the radiation-convective recuperator with secondary emitters have been proposed, in which due to the rational arrangement of heating surfaces, as well as due to the installation of secondary emitters in flues, an increase in heat perception is transmitted to the secondary heat carrier – preheating air. High efficiency of air preheating is provided by two-stage heating: 1st stage of heating – the internal air ring channel with bilateral heating which is washed by combustion products from the parties of the central cylindrical and peripheral ring channels of combustion products; 2nd stage of heating – the external air ring channel in which unilateral heating by products of combustion from the peripheral ring channel of products of combustion is organized. Inner and outer annular air ducts (tanks), interconnected by bypass pipes. To increase the efficiency of heat transfer in the considered recuperator in the central channel of combustion products is placed emitter, which consisting of intersecting radial plates, and in the annular channel of combustion products are placed auxiliary emitters, which made in the form of flat radial edges. These emitters provide an increasing in total heat flux to the walls of the channels of the recuperator. On the basis of the conducted theoretical researches, engineering calculations and CFD – modelling the characteristics of operation of the recuperator for its installation on the furnace of secondary smelting of aluminium are defined. The main advantages of the new design of recuperator are high thermo-hydraulic efficiency, compactness and low metal consumption, ease of installation on the furnace and no need for placement in separate chimneys. It is established that the recuperator provides air heating ta,ex ~ 400 °C at an acceptable aerodynamic drag (pressure drop) on the air track (∆pa ~ 1000 Pa). Appropriate design documentation has been developed for the manufacture of the recuperator, which is installed on a pilot furnace of secondary aluminium smelting by California Die Casting (USA).


Export Citation Format

Share Document