Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

biochemical processes
Recently Published Documents


TOTAL DOCUMENTS

1238
(FIVE YEARS 391)

H-INDEX

57
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Amgad Rabie

Natural palmitic acid is a pivotal saturated fatty acid used in many biochemical processes occurring in humans and diverse living creatures, as it is the most common natural long-chain carboxylic acid whose unrivaled amphiphilic sperm-like skeleton with the inert single 15-C aliphatic chain (tail or carrier) and the very active one carboxyl group (head) represent a rich reactive entity and carrier for several organic/medicinal chemistry and pharmaceutics applications with respect to drug design and formulation. Derivatives of 1,3,4-oxadiazoles along with their 1,3,4-thiadiazoles and 1,2,4-triazoles analogs exhibit a broad spectrum of substantial pharmacological activities. Agreeing with the well-known hybridization principles and incorporation norms in hybrid chemistry, if a substituted nitrogenous heterocyclic aromatic nucleus of the three aforementioned kinds is straightway attached to the simple straight palmitic acid backbone at the position of the carboxyl group, the produced molecules are supposed to be very bioactive. This research work reports for the first once the efficient design/synthesis and characterization/elucidation of four one-tailed nitrogen-containing heterocyclic derivatives of palmitic acid constructure, which introduce a novel biologically-important pharmacophore having biocompatible amphiphilic sperm-shaped heteroaromatic structure.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262555
Author(s):  
Md. Kabir Ahamed ◽  
Marzuk Ahmed ◽  
Mohammad Abu Sayem Karal

Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.


Author(s):  
Samridhi Sharma ◽  
Ting Shen ◽  
Nitin Chitranshi ◽  
Veer Gupta ◽  
Devaraj Basavarajappa ◽  
...  

AbstractRetinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, β, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.


2022 ◽  
Vol 16 (4) ◽  
pp. 68-74
Author(s):  
Petr Smirnov ◽  
Alexey Terentyev ◽  
Nikolay Pushkarenko ◽  
Mihail Smirnov ◽  
Ayrat Valiev ◽  
...  

At present, the preparation of the soil for the hop plant with machines of traditional hop production technology is unrealistic, since there are no more hops and no one is producing them. In this regard, a progressive technology for growing hops and promising machines for them, including for energy-saving tillage for hops, have been proposed. As the main cultivation, two-strip soil cultivation was used for rows of hops with a combined subsoiler-drener developed at the Chuvash State Agrarian University. Moreover, loosening is carried out with the simultaneous introduction of liquefied litterless manure with a dose of 100-120 t / ha to the subsurface zone from 0.20 to 0.60 m. In the soil, liquefied litterless manure fills the drainage canal and the soil pores adjacent to the canal, activates the activity of microorganisms and soil biochemical processes. Row loosening with a combined machine allows to reduce the energy consumption of processing by 57% compared to continuous plowing with plantation plows and to exclude the operation of applying bedding manure with subsequent moldboard embedding. As a pre-planting soil preparation, cultivation with combined stubble cultivators of the KST-3,8 type and its analogues with the incorporation of crushed green manure (up to 75%), high-quality leveling and crumbling of the soil is proposed. Stirring and leveling of the field surface is provided by afrontal discs behind the last row of flat-cut tines, crumbling - by a ribbed roller. The maneuverability of such a cultivator in the cramped conditions of the hop is taken into account. Replacement of plowing operations with general purpose plows and subsequent leveling by a cultivator allows an additional 45-50% reduction in the energy intensity of pre-planting soil cultivation. The main energy source in the main tillage is the tractor BTZ-243k


2022 ◽  
Vol 14 (2) ◽  
pp. 612
Author(s):  
Senem Onen Cinar ◽  
Abdullah Nsair ◽  
Nils Wieczorek ◽  
Kerstin Kuchta

Temperature management is one of the primary considerations of biogas plant operation, and influences physical and biochemical processes. An increase in the temperature leads to an increase in the hydrolysis rate of the feedstock, while it can inhibit microorganisms taking part in different stages of anaerobic digestion. Because of the complexity of the biochemical processes within the anaerobic digestion process, there is a lack of knowledge about the effects of temperature and temperature change on efficiency. Moreover, the impact of stirring directly affects the temperature distribution in the anaerobic digestion reactors. In this study, the temperature management in an industrial-scale biogas plant was examined, and the effect of small temperature changes (from the operation temperature 42 °C) on the efficiency was studied in a laboratory under two different conditions: with stirring (at 40 and 44 °C) and without stirring (at 40 and 44 °C). The examination results from the biogas plant showed that heat transfer in the reactor was not sufficient at the bottom of the digester. Adaptation of the post-digester samples to the temperature changes was more challenging than that of the digester samples. From digestate samples, higher biomethane generation could be obtained, resulting from sufficient contact between microorganisms, enzymes, and substrates. Overall, differences between these changing conditions (approx. 6 NmL CH4 g VS−1) were not significant and could be adapted by the process.


Author(s):  
Parveen. A ◽  
Devika. R

Cardiovascular diseases, like coronary heart disease or artery disorders (arteriosclerosis, including artery solidification), heart failure (myocardial infarction), arrhythmias, congestive heart condition, stroke, elevated vital signs (hypertension), rheumatic heart disorder, and other circulatory system dysfunctions are the most common causes of death worldwide. Cardiovascular disorders are treated with stenting, coronary bypass surgery grafting, anticoagulants, antiplatelet agents, and other pharmacological and surgical procedures; however, these have limitations due to their adverse effects. Fibrinolytic agents degrade fibrin through enzymatic and biochemical processes. There are various enzymes that are currently used as a treatment for CVDs, like Streptokinase, Nattokinase, Staphylokinase, Urokinase, etc. These enzymes are derived from various sources like bacteria, fungi, algae, marine organisms, plants, snakes, and other organisms. This review deals with the fibrinolytic enzymes, their mechanisms, sources, and their therapeutic potential.


2022 ◽  
pp. 67-105
Author(s):  
Tharaka Rama Krishna C. Doddapaneni ◽  
Fiaz Ahmad ◽  
Kaspar Valgepea ◽  
Timo Kikas

2022 ◽  
Vol 42 ◽  
pp. 01024
Author(s):  
Natalia Zakharchenko ◽  
Sergey Anisimov ◽  
Ivan Dyadishchev ◽  
Sergey Ponomarenko ◽  
Robert Khramov

The effect of colonization by beneficial associative microorganisms Pseudomonas putida KT 2442 and Rhodococcus erythropolis X5 on the growth of Sarepta mustard (Brassica juncea L.) under a covering light-converting material containing organic photoluminophore, in vitro and in vivo, was investigated. The combined use of microbial colonization and photoluminophore coating led to stimulation of plant growth much stronger (2.4 times more) than separately only photoluminophoric coating (1.3 times) or colonization (2.1 times). These data indicate that when covering materials with photoluminophores are used in agrobiotechnologies, luminescent red light (610-730 nm) induces an increase in biochemical processes not only in plants, but also in microorganisms that supply plants with growth regulators and other useful metabolites. The data obtained are relevant for further study of the photobiological mechanisms of interactions between the plant-microorganism system in agrobiotechnologies.


2021 ◽  
Vol 116 ◽  
pp. 123-130
Author(s):  
Mateusz Niedbała

The effect of the use of a soil improver based on waste brown coal on the enzymatic activity of soil in the cultivation of Paulownia hybrids (Paulownia Siebold & Zuccarini, 1835). An important element in controlling the condition of the soil and the plants grown on it are tests of the enzymatic activity of the soil matrix. One of the greatest advantages of using enzyme tests is the ability to make an assessment that also includes other non-measurable factors that affect soil health and condition. The diagnosed changes in soil enzymatic activity are the best parameter for determining the biochemical processes taking place there. This article describes the enzymatic activity of lessive soils on which the Paulownia hybrid variety is cultivated and a soil improver based on waste brown coal is used


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Carolina Duarte-Hospital ◽  
Arnaud Tête ◽  
François Brial ◽  
Louise Benoit ◽  
Meriem Koual ◽  
...  

Environmental factors including diet, sedentary lifestyle and exposure to pollutants largely influence human health throughout life. Cellular and molecular events triggered by an exposure to environmental pollutants are extremely variable and depend on the age, the chronicity and the doses of exposure. Only a fraction of all relevant mechanisms involved in the onset and progression of pathologies in response to toxicants has probably been identified. Mitochondria are central hubs of metabolic and cell signaling responsible for a large variety of biochemical processes, including oxidative stress, metabolite production, energy transduction, hormone synthesis, and apoptosis. Growing evidence highlights mitochondrial dysfunction as a major hallmark of environmental insults. Here, we present mitochondria as crucial organelles for healthy metabolic homeostasis and whose dysfunction induces critical adverse effects. Then, we review the multiple mechanisms of action of pollutants causing mitochondrial toxicity in link with chronic diseases. We propose the Aryl hydrocarbon Receptor (AhR) as a model of “exposome receptor”, whose activation by environmental pollutants leads to various toxic events through mitochondrial dysfunction. Finally, we provide some remarks related to mitotoxicity and risk assessment.


Export Citation Format

Share Document