Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

coal rock
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 186)

H-INDEX

20
(FIVE YEARS 5)

Author(s):  
Zhi-Long He ◽  
Cai-Ping Lu ◽  
Xiu-Feng Zhang ◽  
Ying Guo ◽  
Chao Wang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Ma ◽  
Feng Wang ◽  
Hongyang Liu ◽  
Dawei Yin ◽  
Zhiguo Xia

A comprehensive understanding of the mechanical properties of coal and rock sections is necessary for interpreting the deformation and failure modes of such underground sections and for evaluating the potential dynamic hazards. However, most studies have focused on horizontal coal–rock composites and the mechanical properties of inclined coal–rock composites have not been considered. To explore the influence of different confining pressures and inclined coal seam thicknesses on the mechanical properties and failure characteristics of rock–coal–rock (RCR) composites, a numerical model based on the particle flow code was used to perform simulations on five inclined RCR composites at different confining pressures. The results show that the mechanical properties and failure characteristics of the RCR composites are affected considerably by the inclined coal seam thickness and the confining pressure. (1) When the inclined coal seam thickness is constant, the elasticity modulus of the inclined RCR composite increases nonlinearly with the confining pressure at first, and then remains constant. At the same confining pressure, the elasticity modulus of the inclined RCR composite decreases nonlinearly with the inclined coal seam thickness. (2) When the confining pressure is constant, the peak stress of the inclined RCR composite decreases with the increase of the inclined coal seam thickness. When the inclined coal seam thickness is constant, the peak stress increases with the confining pressure. (3) As the inclined coal seam thickness increases, the peak strain of the inclined RCR composite first decreases rapidly, and then remains constant when there is no confining pressure. When the confining pressure is between 5 and 20 MPa, the peak strain of the inclined RCR composite gradually increases. (4) In the absence of confining pressure, there are few microcracks in the rock at an inclined coal seam thickness of 10 mm, whereas all the other cracks are in the coal section. When the confining pressure ranges between 5 and 20 MPa, the failure modes of the RCR composite can be divided into Y- and X-types.


2022 ◽  
Author(s):  
Xin Jin ◽  
Guochao Zhao ◽  
Lijuan Zhao ◽  
Guocong Lin

Abstract The cutting head is the core working mechanism of the roadheader for coal-rock materials cutting. The efficient and high performance design of cutting head is the key to improve the road head digging and mining technology. In this paper, based on cutting head design theory and virtual prototype technology, we propose a computer-aided structure design and performance optimization method for cutting head. We compile the calculation code and realize the reading and storing of relevant data through Excel. In particular, to obtain more realistic cutting performance data of the cutting head, we construct a coupling model of cutting head cutting rock wall based on virtual prototype technology, and then establish a database matching structural parameters, working parameters, coal-rock properties and cutting performance through extensive simulations. Based on the method, we complete the design of EBZ220 roadheader cutting head. We show that our method can realize the fast and efficient design of cutting head, and the designed cutting head has good working performance.


2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Junhua Xue ◽  
Zhiheng Chen ◽  
Yanhe Li ◽  
Junyou Wang ◽  
Xiao Li

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Feng He ◽  
Song Yang ◽  
Tianjiao Ren ◽  
Hongjie Bian ◽  
Haoran Li

The rheological properties of coal (rock) containing water cannot be characterized by the traditional Bingham model. This problem was addressed in this study through theoretical analysis and experimental research. Based on fractional calculus theory, a fractional calculus soft element was introduced into the traditional Bingham model. An improved Bingham model creep equation and a relaxation equation were obtained through theoretical derivations. Triaxial creep experiments of coal (rock) with different moisture contents were conducted. The parameters of the improved Bingham model were obtained by the least-squares method. Conclusions are as follows: (1) in the improved Bingham model, the stage of nonlinear accelerated creep could be characterized by the creep curves of the soft element; (2) with the increasing moisture content of the coal (rock), the transient strain and the slope of the steady creep stage increased and the total creep time showed a decreasing trend; and (3) the parameters of the creep model were obtained by nonlinear fitting of experimental data, and the fitted curve could better describe the whole creep process. The rationality of the improved creep model was verified. It can provide a theoretical basis for the study and engineering analysis of coal (rock).


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Pengfei Wu ◽  
Jianlong Wang ◽  
Xiaofei Luo ◽  
Rujun Mo ◽  
Yaoqing Hu ◽  
...  

Although hydraulic fracturing has been one of the primary stimulation methods for coal-bed methane (CBM) exploration, it is difficult to be applied in soft and low-permeability coal seams due to the instability of wells in such geological structures. In order to solve the problem, an idea of indirect fracturing is proposed, that is, fractures are initiated in stable and hard rocks and then propagated to coal seams in which crack networks can be formed. To verify the feasibility of such an approach, the true triaxial hydraulic fracturing experiments were conducted using two-dimensional and three-dimensional coal-rock combination samples, respectively. This study investigates the fracture patterns, pressure variation, and fracture morphology. The results show that in the process of fracture propagation from sandy mudstones to coals, the strain energy release rate in the sandy mudstones is 10.69∼25.53 times greater than that in the coal. When the fracture has a tendency to deflect toward the lower strength coal strata, under the condition of large K2/K1, the deflection criterion will be met first and the fracture will deflect and grow into the coal strata. In addition, the complex crack network can be generated when the hydrofracture intersects the coal-rock interface and the fracture pattern is analyzed.


Export Citation Format

Share Document