Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Novel Analysis of Hermite–Hadamard Type Integral Inequalities via Generalized Exponential Type m-Convex Functions

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Muhammad Tariq ◽  
Hijaz Ahmad ◽  
Clemente Cesarano ◽  
Hanaa Abu-Zinadah ◽  
Ahmed E. Abouelregal ◽  
...  

The theory of convexity has a rich and paramount history and has been the interest of intense research for longer than a century in mathematics. It has not just fascinating and profound outcomes in different branches of engineering and mathematical sciences, it also has plenty of uses because of its geometrical interpretation and definition. It also provides numerical quadrature rules and tools for researchers to tackle and solve a wide class of related and unrelated problems. The main focus of this paper is to introduce and explore the concept of a new family of convex functions namely generalized exponential type m-convex functions. Further, to upgrade its numerical significance, we present some of its algebraic properties. Using the newly introduced definition, we investigate the novel version of Hermite–Hadamard type integral inequality. Furthermore, we establish some integral identities, and employing these identities, we present several new Hermite–Hadamard H–H type integral inequalities for generalized exponential type m-convex functions. These new results yield some generalizations of the prior results in the literature.

2021 ◽  
Vol 2 (3) ◽  
pp. 62-76
Author(s):  
Muhammad Tariq Muhammad Tariq ◽  
Hijaz Ahmad ◽  
Soubhagya Kumar Sahoo ◽  
Jamshed Nasir

In this present case, we focus and explore the idea of a new family of convex function namely exponentialtype m–convex functions. To support this newly introduced idea, we elaborate some of its nice algebraicproperties. Employing this, we investigate the novel version of Hermite–Hadamard type integral inequality.Furthermore, to enhance the paper, we present several new refinements of Hermite–Hadamard (H−H) inequality.Further, in the manner of this newly introduced idea, we investigate some applications of specialmeans. These new results yield us some generalizations of the prior results in the literature. We believe, themethodology investigated in this paper will further inspire intrigued researchers.


2021 ◽  
Vol 5 (4) ◽  
pp. 144
Author(s):  
Hijaz Ahmad ◽  
Muhammad Tariq ◽  
Soubhagya Kumar Sahoo ◽  
Jamel Baili ◽  
Clemente Cesarano

In this paper, we propose some generalized integral inequalities of the Raina type depicting the Mittag–Leffler function. We introduce and explore the idea of generalized s-type convex function of Raina type. Based on this, we discuss its algebraic properties and establish the novel version of Hermite–Hadamard inequality. Furthermore, to improve our results, we explore two new equalities, and employing these we present some refinements of the Hermite–Hadamard-type inequality. A few remarkable cases are discussed, which can be seen as valuable applications. Applications of some of our presented results to special means are given as well. An endeavor is made to introduce an almost thorough rundown of references concerning the Mittag–Leffler functions and the Raina functions to make the readers acquainted with the current pattern of emerging research in various fields including Mittag–Leffler and Raina type functions. Results established in this paper can be viewed as a significant improvement of previously known results.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Saad Ihsan Butt ◽  
Saima Rashid ◽  
Muhammad Tariq ◽  
Miao-Kun Wang

In this work, we introduce the idea of n –polynomial harmonically s –type convex function. We elaborate the new introduced idea by examples and some interesting algebraic properties. As a result, new Hermite–Hadamard, some refinements of Hermite–Hadamard and Ostrowski type integral inequalities are established, which are the generalized variants of the previously known results for harmonically convex functions. Finally, we illustrate the applicability of this new investigation in special functions (hypergeometric function and special mean of real numbers).


2021 ◽  
Vol 2 (2) ◽  
pp. 1-15
Author(s):  
Muhammad Tariq ◽  
Jamshed Nasir Jamshed Nasir ◽  
Soubhagya Kumar Sahoo ◽  
Ayaz Ali Mallah

In this paper, we define and investigate generalized exponential type convex functions namely exponentially $s$--convex function. In the support of this newly introduced idea, we attain the algebraic properties of this function, and furthermore, in the frame of simple calculus, we explore and attain the novel kind of Ostrowski type inequalities.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 136
Author(s):  
Ying Wu ◽  
Hong-Ping Yin ◽  
Bai-Ni Guo

In the paper, with the help of two known integral identities and by virtue of the classical Hölder integral inequality, the authors establish several new integral inequalities of the Hermite–Hadamard type for convex functions. These newly established inequalities generalize some known results.


2021 ◽  
Vol 2 (1) ◽  
pp. 24-41
Author(s):  
Muhammad Tariq ◽  
Soubhagya Kumar Sahoo ◽  
Jamshed Nasir ◽  
Sher Khan Awan

The main objective of this paper is basically to acquire some new extensions of Ostrowski type inequalities for the function whose first derivatives' absolute value are $s$--type $p$--convex. We initially presented a new auxiliary definition namely $s$--type $p$--convex function. Some beautiful algebraic properties and examples related to the newly introduced definition are discussed. We additionally investigated some beautiful cases that can be derived from the novel refinements of the paper. These new results yield us some generalizations of the prior results. We trust that the techniques introduced in this paper will further motivate intrigued researchers.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Saad Ihsan Butt ◽  
Muhammad Tariq ◽  
Adnan Aslam ◽  
Hijaz Ahmad ◽  
Taher A. Nofal

In this work, we introduce the idea and concept of m –polynomial p –harmonic exponential type convex functions. In addition, we elaborate the newly introduced idea by examples and some interesting algebraic properties. As a result, several new integral inequalities are established. Finally, we investigate some applications for means. The amazing techniques and wonderful ideas of this work may excite and motivate for further activities and research in the different areas of science.


2020 ◽  
Vol 26 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Silvestru Sever Dragomir

AbstractIn this paper, by the use of the divergence theorem, we establish some integral inequalities of Hermite–Hadamard type for convex functions of several variables defined on closed and bounded convex bodies in the Euclidean space {\mathbb{R}^{n}} for any {n\geq 2}.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Dumitru Baleanu ◽  
Artion Kashuri ◽  
Faraidun Hamasalh ◽  
...  

AbstractA specific type of convex functions is discussed. By examining this, we investigate new Hermite–Hadamard type integral inequalities for the Riemann–Liouville fractional operators involving the generalized incomplete gamma functions. Finally, we expose some examples of special functions to support the usefulness and effectiveness of our results.


Export Citation Format

Share Document