Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

type integral
Recently Published Documents


TOTAL DOCUMENTS

1094
(FIVE YEARS 197)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 6 (1) ◽  
pp. 33
Author(s):  
Sabah Iftikhar ◽  
Samet Erden ◽  
Muhammad Aamir Ali ◽  
Jamel Baili ◽  
Hijaz Ahmad

Inequality theory has attracted considerable attention from scientists because it can be used in many fields. In particular, Hermite–Hadamard and Simpson inequalities based on convex functions have become a cornerstone in pure and applied mathematics. We deal with Simpson’s second-type inequalities based on coordinated convex functions in this work. In this paper, we first introduce Simpson’s second-type integral inequalities for two-variable functions whose second-order partial derivatives in modulus are convex on the coordinates. In addition, similar results are acquired by considering that powers of the absolute value of second-order partial derivatives of these two-variable functions are convex on the coordinates. Finally, some applications for Simpson’s 3/8 cubature formula are given.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Sadibou Aidara ◽  
Ibrahima Sane

Abstract This paper deals with a class of deplay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout this paper is the divergence-type integral.


2022 ◽  
Vol 8 ◽  
pp. 66-73
Author(s):  
Mykola Yaremenko

In this article, we establish new characterizations of convex functions, prove some connected convex type integral inequality; consider the pair of convex functions as the dual semi-norms in functional space. The properties of the integral operators are considered in the scales of the convex semi-norm under the standard conditions on singular kernels.


2022 ◽  
Vol 7 (4) ◽  
pp. 5728-5751
Author(s):  
Muhammad Uzair Awan ◽  
◽  
Sadia Talib ◽  
Artion Kashuri ◽  
Ibrahim Slimane ◽  
...  

<abstract><p>The main objective of this paper is to derive some new post quantum analogues of Dragomir–Agarwal and Iyengar type integral inequalities essentially by using the strongly $ \varphi $-preinvexity and strongly quasi $ \varphi $-preinvexity properties of the mappings, respectively. We also discuss several new special cases which show that the results obtained are quite unifying. In order to illustrate the efficiency of our main results, some applications regarding $ ({\mathrm{p}}, {\mathrm{q}}) $-differentiable mappings that are in absolute value bounded are given.</p></abstract>


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Muhammad Tariq ◽  
Hijaz Ahmad ◽  
Clemente Cesarano ◽  
Hanaa Abu-Zinadah ◽  
Ahmed E. Abouelregal ◽  
...  

The theory of convexity has a rich and paramount history and has been the interest of intense research for longer than a century in mathematics. It has not just fascinating and profound outcomes in different branches of engineering and mathematical sciences, it also has plenty of uses because of its geometrical interpretation and definition. It also provides numerical quadrature rules and tools for researchers to tackle and solve a wide class of related and unrelated problems. The main focus of this paper is to introduce and explore the concept of a new family of convex functions namely generalized exponential type m-convex functions. Further, to upgrade its numerical significance, we present some of its algebraic properties. Using the newly introduced definition, we investigate the novel version of Hermite–Hadamard type integral inequality. Furthermore, we establish some integral identities, and employing these identities, we present several new Hermite–Hadamard H–H type integral inequalities for generalized exponential type m-convex functions. These new results yield some generalizations of the prior results in the literature.


2021 ◽  
Vol 2 (3) ◽  
pp. 62-76
Author(s):  
Muhammad Tariq Muhammad Tariq ◽  
Hijaz Ahmad ◽  
Soubhagya Kumar Sahoo ◽  
Jamshed Nasir

In this present case, we focus and explore the idea of a new family of convex function namely exponentialtype m–convex functions. To support this newly introduced idea, we elaborate some of its nice algebraicproperties. Employing this, we investigate the novel version of Hermite–Hadamard type integral inequality.Furthermore, to enhance the paper, we present several new refinements of Hermite–Hadamard (H−H) inequality.Further, in the manner of this newly introduced idea, we investigate some applications of specialmeans. These new results yield us some generalizations of the prior results in the literature. We believe, themethodology investigated in this paper will further inspire intrigued researchers.


2021 ◽  
Vol 26 (04) ◽  
pp. 330-348
Author(s):  
M. Tariq ◽  
H. Ahmad ◽  
S. K. Sahoo ◽  
L. Sh. Aljoufi ◽  
S. K. Awan

2021 ◽  
Vol 5 (4) ◽  
pp. 252
Author(s):  
Humaira Kalsoom ◽  
Miguel Vivas-Cortez ◽  
Muhammad Amer Latif ◽  
Hijaz Ahmad

In this paper, we establish a new version of Hermite-Hadamard-Fejér type inequality for harmonically convex functions in the form of weighted fractional integral. Secondly, an integral identity and some weighted midpoint fractional Hermite-Hadamard-Fejér type integral inequalities for harmonically convex functions by involving a positive weighted symmetric functions have been obtained. As shown, all of the resulting inequalities generalize several well-known inequalities, including classical and Riemann–Liouville fractional integral inequalities.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (2) ◽  
pp. 268-283
Author(s):  
Artion Kashuri ◽  
◽  
Themistocles M. Rassias ◽  

The authors discover an identity for a generalized integral operator via differentiable function. By using this integral equation, we derive some new bounds on Hermite–Hadamard type integral inequality for differentiable mappings that are in absolute value at certain powers convex. Our results include several new and known results as particular cases. At the end, some applications of presented results for special means and error estimates for the mixed trapezium and midpoint formula have been analyzed. The ideas and techniques of this paper may stimulate further research in the field of integral inequalities.


Export Citation Format

Share Document