Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Researching a Moving Target Detection Method Based on Magnetic Flux Induction Technology

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1967
Author(s):  
Chaoqun Xu ◽  
Li Yang ◽  
Kui Huang ◽  
Yang Gao ◽  
Shaohua Zhang ◽  
...  

The ocean is a very important arena in modern warfare where all marine powers deploy their military forces. Due to the complex environment of the ocean, underwater equipment has become a very threatening means of surprise attack in modern warfare. Therefore, the timely and effective detection of underwater moving targets is the key to obtaining warfare advantages and has important strategic significance for national security. In this paper, magnetic flux induction technology was studied with regard to the difficulty of detecting underwater concealed moving targets. Firstly, the characteristics of a magnetic target were analyzed and an equivalent magnetic dipole model was established. Secondly, the structure of the rectangular induction coil was designed according to the model, and the relationship between the target’s magnetism and the detection signal was deduced. The variation curves of the magnetic flux and the electromotive force induced in the coil were calculated by using the numerical simulation method, and the effects of the different motion parameters of the magnetic dipole and the size parameters of the coil on the induced electromotive force were analyzed. Finally, combined with the wavelet threshold filter, a series of field tests were carried out using ships of different materials in shallow water in order to verify the moving target detection method based on magnetic flux induction technology. The results showed that this method has an obvious response to moving targets and can effectively capture target signals, which verifies the feasibility of the magnetic flux induction detection technology.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Jianxia Yin ◽  
Shimeng Huang ◽  
Lei Lei ◽  
Jing Yao

The detection and classification of moving targets have always been a key technology in intelligent video surveillance. Current detection and classification algorithms for moving targets still face many difficulties, mainly because of the complexity of the monitoring environment and the limitations of target characteristics. Therefore, this article conducts corresponding research on moving target detection and classification in intelligent video surveillance. According to the Gaussian Mixture Background Model and Frame Difference Method, this paper proposes a moving target detection method based on GMM (Gaussians Mixture Model) and Frame Difference Method. This method first proposes a new image combination algorithm that combines GMM and frame difference method, which solves the problems of noise and voids inside the target caused by the fusion of traditional GMM and frame difference method. The moving target detection method can effectively solve the problems of incomplete moving target detection, target internal gap, and noise, and it plays a vital role in the subsequent moving target classification process. Then, the method adds image inpainting technology to compensate the moving target in space and obtain a better target shape. The innovation of this paper is that in order to solve the multiobject classification problem, a binary tree decision support vector machine based on statistical learning is constructed as a classifier for moving object classification. Improve the learning efficiency of the classifier, solve the competitive classification problem of the traditional SVM, and increase the efficiency of the mobile computing intelligent monitoring method by more than 70%.


Author(s):  
Xinxin Tang ◽  
Xiaoling Zhang ◽  
Jun Shi ◽  
Shunjun Wei

2021 ◽  
Author(s):  
Mengen Yan ◽  
Lianghai Li ◽  
Haochuan Chen

Author(s):  
M. Bharat Kumar ◽  
P. Rajesh Kumar

In radar signal processing, detecting the moving targets in a cluttered background remains a challenging task due to the moving out and entry of targets, which is highly unpredictable. In addition, detection of targets and estimation of the parameters have become a major constraint due to the lack of required information. However, the appropriate location of the targets cannot be detected using the existing techniques. To overcome such issues, this paper presents a developed Deep Convolutional Neural Network-enabled Neuro-Fuzzy System (Deep CNN-enabled Neuro-Fuzzy system) for detecting the moving targets using the radar signals. Initially, the received signal is presented to the Short-Time Fourier Transform (STFT), matched filter, radar signatures-enabled Deep Recurrent Neural Network (Deep RNN), and introduced deep CNN to locate the targets. The target location output results are integrated using the newly introduced neuro-fuzzy system to detect the moving targets effectively. The proposed deep CNN-based neuro-fuzzy system obtained effective moving target detection results by varying the number of targets, iterations, and the pulse repetition level for the metrics, like detection time, missed target rate, and MSE with the minimal values of 1.221s, 0.022, and 1,952.15.


2020 ◽  
Vol 58 (9) ◽  
pp. 6677-6690
Author(s):  
Yifan Guo ◽  
Guisheng Liao ◽  
Jun Li ◽  
Xixi Chen

Author(s):  
Hui Wang ◽  
Shoulun Dai ◽  
Shichao Zheng ◽  
Zhansheng Chen

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2204 ◽  
Author(s):  
Yang Yu ◽  
Bo Liu ◽  
Zhen Chen ◽  
ZhiKang Li

A macro-pulse photon counting Lidar is described in this paper, which was designed to implement long-range and high-speed moving target detection. The ToF extraction method for the macro-pulse photon counting Lidar system is proposed. The performance of the macro pulse method and the traditional pulse accumulation method were compared in theory and simulation experiments. The results showed that the performance of the macro-pulse method was obviously better than that of the pulse accumulation method. At the same time, a laboratory verification platform for long range and high-speed moving targets was built. The experimental results were highly consistent with the theoretical and simulation results. This proved that the macro pulse photon counting Lidar is an effective method to measure long range high-speed moving targets.


Export Citation Format

Share Document