Control of Dynamic Positioning System with Disturbance Observer for Autonomous Marine Surface Vessels
Keyword(s):
The main goal of the research is to design an efficient controller for a dynamic positioning system for autonomous surface ships using the backstepping technique for the case of full-state feedback in the presence of unknown external disturbances. The obtained control commands are distributed to each actuator of the overactuated vessel via unconstrained control allocation. The numerical hydrodynamic model of CyberShip I and the model of environmental disturbances are applied to simulate the operation of the ship control system using the time domain analysis. Simulation studies are presented to illustrate the effectiveness of the proposed controller and its robustness to external disturbances.
2012 ◽
Vol 204-208
◽
pp. 4518-4522
◽
Keyword(s):
Keyword(s):
1998 ◽
Vol 1998
(183)
◽
pp. 153-163
Keyword(s):
2012 ◽
Vol 16
(2)
◽
pp. 66-74
◽
Keyword(s):
2020 ◽
Vol 4
(394)
◽
pp. 109-120
2014 ◽
Vol 919-921
◽
pp. 2127-2130
Keyword(s):
Keyword(s):