A Taguchi approach for optimization of mass transfer coefficient in metronidazole drug delivery process and activated carbon as a carrier
New strategies have been developed in the drug delivery system in recent years for applications like pharmacokinetics control, pharmacodynamics, undetermined toxicity, immunity, biophysics, and drug efficacy. The loading process was based on adsorption between activated carbon molecules' surfaces and drug molecules dissolved in ethanol at room temperature, where porous activated carbon has great drug delivery characteristics. The current research is studying the effect of the number of parameters including particle size, the weight of drug to the carrier, weight ratio, drug loading and temperature, time, and pH solution on mass transfer coefficient. The Taguchi program's result shows that the optimum point of maximum loading efficiency is 74% when the activated carbon in nanoparticle was in 11.042 nm size, and 985.6013 m2/g surface area weight drug to AC weight ratio is 1.5. The drug process release obtained an optimum point that gives a better value of mass transfer coefficient of 0.0007777 and 0.0003372 cm/hr in the first hour, 37°C, and pH of 1.5 solutions for both metronidazole/macro AC and metronidazole/Nano AC complexes.