Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Major role of ammonia-oxidizing bacteria in N<sub>2</sub>O production in the Pearl River estuary

2019 ◽  
Vol 16 (24) ◽  
pp. 4765-4781 ◽  
Author(s):  
Li Ma ◽  
Hua Lin ◽  
Xiabing Xie ◽  
Minhan Dai ◽  
Yao Zhang

Abstract. Nitrous oxide (N2O) has significant global warming potential as a greenhouse gas. Estuarine and coastal regimes are the major zones of N2O production in the marine system. However, knowledge on biological sources of N2O in estuarine ecosystems remains controversial but is of great importance for understanding global N2O emission patterns. Here, we measured concentrations and isotopic compositions of N2O as well as distributions of ammonia-oxidizing bacterial and archaeal amoA and denitrifier nirS genes by quantitative polymerase chain reaction along a salinity gradient in the Pearl River estuary, and we performed in situ incubation experiments to estimate N2O yields. Our results indicated that nitrification predominantly occurred, with significant N2O production during ammonia oxidation. In the hypoxic waters of the upper estuary, strong nitrification resulted in the observed maximum N2O and ΔN2Oexcess concentrations, although minor denitrification might be concurrent at the site with the lowest dissolved oxygen. Ammonia-oxidizing β-proteobacteria (AOB) were significantly positively correlated with all N2O-related parameters, although their amoA gene abundances were distinctly lower than ammonia-oxidizing archaea (AOA) throughout the estuary. Furthermore, the N2O production rate and the N2O yield normalized to amoA gene copies or transcripts estimated a higher relative contribution of AOB to the N2O production in the upper estuary. Taken together, the in situ incubation experiments, N2O isotopic composition and concentrations, and gene datasets suggested that the high concentration of N2O (oversaturated) is mainly produced from strong nitrification by the relatively high abundance of AOB in the upper reaches and is the major source of N2O emitted to the atmosphere in the Pearl River estuary.

2019 ◽  
Author(s):  
Li Ma ◽  
Hua Lin ◽  
Xiabing Xie ◽  
Minhan Dai ◽  
Yao Zhang

Abstract. Nitrous oxide (N2O) has significant global warming potential as a greenhouse gas. Estuarine and coastal regimes are the major zones of N2O production in the marine system. However, biological sources of N2O in estuarine ecosystems remains controversial, but is of great importance for understanding the global N2O emission patterns. Here, we measured concentrations and isotopic compositions of N2O as well as distributions and transcript levels of ammonia-oxidizing bacterial and archaeal amoA and denitrifier nirS genes by quantitative polymerase chain reaction along a salinity gradient in the Pearl River Estuary, and performed in situ incubation experiments to estimate N2O yields. Our results indicated that nitrification predominantly occurred, with significant N2O production during ammonia oxidation, in the hypoxic waters of the upper estuary where the maximum N2O and △N2O concentrations were observed, although minor denitrification might be concurrent at the site with the lowest dissolved oxygen. Ammonia-oxidizing β-proteobacteria (AOB) were significantly positively correlated with all N2O parameters, although their amoA gene abundances were distinctly lower than ammonia-oxidizing Archaea (AOA) throughout the estuary. Furthermore, the N2O production rate and the N2O yield normalized to amoA gene copies or transcripts estimated a higher relative contribution of AOB to the N2O production in the upper estuary. Taken together, the in situ incubation experiments, N2O isotopic composition and concentrations, and gene datasets suggested that the high concentration of N2O (oversaturated) is mainly produced from strong nitrification by the relatively high abundance of AOB in the upper reaches as the major source of N2O emitted to the atmosphere in the whole estuary.


2019 ◽  
Vol 29 (4) ◽  
pp. 861-875
Author(s):  
Zeyu Zeng ◽  
William W. L. Cheung ◽  
Shiyu Li ◽  
Jiatang Hu ◽  
Ying Wang

2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen

The Pearl River Estuary (PRE) is one of the major fishing grounds for the squid Uroteuthis chinensis. Taking that into consideration, this study analyzes the environmental effects on the spatiotemporal variability of U. chinensis in the PRE, on the basis of the Generalized Additive Model (GAM) and Clustering Fishing Tactics (CFT), using satellite and in situ observations. Results show that 63.1% of the total variation in U. chinensis Catch Per Unit Effort (CPUE) in the PRE could be explained by looking into outside factors. The most important one was the interaction of sea surface temperature (SST) and month, with a contribution of 26.7%, followed by the interaction effect of depth and month, fishermen’s fishing tactics, sea surface salinity (SSS), chlorophyll a concentration (Chl a), and year, with contributions of 12.8%, 8.5%, 7.7%, 4.0%, and 3.1%, respectively. In summary, U. chinensis in the PRE was mainly distributed over areas with an SST of 22–29 °C, SSS of 32.5–34‰, Chl a of 0–0.3 mg × m−3, and water depth of 40–140 m. The distribution of U. chinensis in the PRE was affected by the western Guangdong coastal current, distribution of marine primary productivity, and variation of habitat conditions. Lower stock of U. chinensis in the PRE was connected with La Niña in 2008.


Harmful Algae ◽  
2012 ◽  
Vol 13 ◽  
pp. 10-19 ◽  
Author(s):  
Ping-Ping Shen ◽  
Ya-Nan Li ◽  
Yu-Zao Qi ◽  
Lv-Ping Zhang ◽  
Ye-Hui Tan ◽  
...  

2021 ◽  
Vol 294 ◽  
pp. 1-12
Author(s):  
Peihong Kang ◽  
Han Zhang ◽  
Zixiang Yang ◽  
Yifan Zhu ◽  
Biyan He ◽  
...  

Export Citation Format

Share Document