Assessing the effect of lithological setting, block characteristic and slope topography on the runout length of rockfalls in the Alps and on the La Réunion island
Abstract. In high mountain regions, rockfalls are common processes, which transport different volumes of material and therefore endanger populated areas and infrastructure facilities. In four study areas within different lithological settings, LiDAR (light detection and ranging) data were acquired for a morphometric analysis of block sizes, block shapes and talus cone characteristics. Based on these high-resolution terrestrial laser scanning (TLS) data, the three axes of every block larger than 0.5 m in the referenced point cloud were measured. Block sizes and shapes are used to investigate them in the context of runout distances and to analyse the spatial distribution of blocks on the talus cone. We also investigate the influence of terrain parameters such as slope inclination, roughness and profile curvature (longitudinal profiles). Our study shows that the relation of block size within different lithological settings on runout length is complex, because we can neither confirm nor reject the theory of gravitational sorting. We also found that the block shape (axial ratio) does not have a simple influence on runout length, as it plays the role of a moderating parameter in two study sites (Gampenalm: GA, Dreitorspitze: DTS) while we could not confirm this for Piton de la Fournaise (PF) and Zwieselbach valley (ZBT). The derived roughness values show a clear difference between the four study sites. This also applies for the parameter of slope inclination and longitudinal profiles.