Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

trinitrobenzene sulfonic acid
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 69)

H-INDEX

51
(FIVE YEARS 2)

2021 ◽  
Vol 12 (2) ◽  
pp. 68-76
Author(s):  
Evelynne Silva ◽  
Ítalo Medeiros Azevedo ◽  
Irami Araújo Filho ◽  
Aldo Cunha Medeiros

Objective: This study aimed to investigate the effect of A. chica extract on the evolution of experimental rectocolitis in rats, and the expression of the pro-inflammatory cytokines TNF-a, IL-1β and IL-6 in colonic tissue. Methods: Wistar rats weighing 275±23g were distributed into 4 groups of 6 animals each. Rectocolitis was induced in rats by rectal administration of trinitrobenzene sulfonic acid (TNBS). Seventy-two hours after TNBS injection, animals were treated daily for 6 days. Groups: 1. Normal control group without induction of rectocolitis. Received 0.9% saline injection v.o. by gavage during treatment. 2. TNBS rectocolitis group, treated with normal saline (SN) by gavage (TNBS+SN); 3. TNBS rectocolitis group treated with A. chica extract (ACE), receiving a daily dose of 300 mg of A. chica extract by gavage (TNBS+ACE);4. TNBS rectocolitis group treated with mesalazine, receiving a daily dose of 100 mg/kg of mesalazine orally (TNBS+MEZ). Macroscopic examination of the colon and dosing of TNF-α, IL-1β and IL-6 in colon tissue were performed. Results: There was a reduction in weight in animals treated only with TNBS+NS. No difference in weight was observed comparing the animals treated with ACE and MEZ. In the control group no mucosal ulcers or edema of the colon wall were observed. Several mucosal ulcers, edema and hyperemia occurred in the colon of rats in the TNBS+SN group. In two of the animals in this group there was colon perforation, tamponated by omentum. A reduction of mucosal ulcers number in the TNBS+ACE (crajiru) group was seen, compared to the TNBS+SN and TNBS+MEZ group. There was a significant reduction of TNF-α, IL-1β and IL-6 in the colon tissue of animals treated with crajiru extract, TCBS+ACE group, when compared to the control group (p<0.001), TNBS+SN group, and TNBS+MEZ groups (p<0.001). Conclusion: This is the first study to show that A. chica extract positively influences the treatment of TNBS/induced rectocolitis through its antiinflamatory activity. More comprehensive studies are needed to understand the underlying mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lichao Qiao ◽  
Lei Fang ◽  
Junyi Zhu ◽  
Yu Xiang ◽  
Haixia Xu ◽  
...  

Background and Aims: Surgery remains the major available strategy in inflammatory bowel disease (IBD) fibrotic strictures because no available drugs have sufficient prevention and treatment in this complication. This study aimed to evaluate the efficacy of the total flavone of Abelmoschus manihot L. Medic (TFA) on the development of colonic fibrosis in mice and its possible mechanism.Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced chronic colonic inflammation-associated fibrosis mice were used to evaluate anti-fibrosis of TFA using macroscopic, histological, immunohistochemical analyses, ELISA, Masson staining, Verhoeff’s von Gieson staining, transcription-quantitative polymerase chain reaction, and immunoblot analysis.Results: Oral administration of TFA attenuated body weight loss, reduced colon length shortening, lowered the morphological damage index score, and notably ameliorated the inflammatory response. TFA downregulated proinflammatory cytokines IL-6, IL-17, TNF-α, IFN-γ productions, and increased the levels of anti-inflammatory cytokine IL-10 and TGF-β. The histological severity of the colonic fibrosis was also notably improved by the TFA treatment and associated with a significant reduction in the colonic expression of col1a2, col3a2, and hydroxyproline. TFA inhibits α-SMA, TGF-β, vimentin, TIMP-1 expression, increasing MMPs, thereby inhibiting activated intestinal mesenchymal cells and extracellular matrix (ECM) deposition.Conclusion: Together, we herein provide the evidence to support that TFA may restore the imbalance of Th17/Treg and decrease the generation of ECM. This may be a potential mechanism by which TFA protects the intestine under inflammatory conditions and acts as a therapeutic agent for the treatment of intestinal fibrosis in Crohn’s disease.


Author(s):  
Dan Ren ◽  
Jia-Ni Li ◽  
Xin-Tong Qiu ◽  
Fa-Ping Wan ◽  
Zhen-Yu Wu ◽  
...  

AbstractCentral sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.


2021 ◽  
Vol 2 ◽  
Author(s):  
Stanley M. Cheatham ◽  
Karan H. Muchhala ◽  
Eda Koseli ◽  
Joanna C. Jacob ◽  
Essie Komla ◽  
...  

Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) are excellent analgesics, but recent clinical evidence suggests that these drugs might worsen disease severity in Crohn's disease patients, limiting their clinical utility for treating Inflammatory Bowel Disease (IBD). One indicator of change in well-being from conditions such as IBD is behavioral depression and disruption to activities of daily living. Preclinical measures of behavioral depression can provide an indicator of changes in quality of life and subsequent modification by candidate analgesics. In mice, nesting is an adaptive unconditioned behavior that is susceptible to disruption by noxious stimuli, and some types of pain related nesting depression are responsive to opioid and NSAID analgesics. Here we show that a 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) model of experimental colitis depresses nesting behavior in mice, and we evaluated effects of morphine, an opioid, and ketoprofen, a NSAID, on TNBS-induced nesting depression. In Swiss Webster mice, TNBS significantly reduced nesting that peaked on Day 3 and recovered in a time-dependent manner with complete recovery by Day 7. In the absence of colonic inflammation, daily treatment with morphine (1–10 mg/kg) did not decrease nesting except at 10mg/kg/day. However, in TNBS-treated mice 3.2 mg/kg/day morphine significantly exacerbated TNBS-induced nesting depression and delayed recovery. While 3.2 mg/kg/day morphine alone did not alter locomotor activity and TNBS-induced depression of locomotion recovered, the combination of TNBS and 3.2 mg/kg/day morphine significantly attenuated locomotion and prevented recovery. Daily treatment with 3.2 or 10 mg/kg ketoprofen in TNBS-treated mice did not prevent depression of nesting. These data suggest that opioid analgesics but not NSAIDS worsen colonic inflammation-induced behavioral depression. Furthermore, these findings highlight the importance of evaluating analgesic effects in models of colonic inflammation induced depression of behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiao-Yun Zhang ◽  
Hai-Mei Zhao ◽  
Yi Liu ◽  
Xiu-Yun Lu ◽  
Yan-Zhen Li ◽  
...  

Sishen Pill (SSP) is a classical prescription of traditional Chinese medicine and often used to treat gastrointestinal diseases, including ulcerative colitis (UC). However, its mechanism is still unclear. We aimed to determine the mechanism of SSP in the treatment of UC by investigating if it maintains the integrity of the intestinal mucosal barrier via the Rho A/Rho kinase (ROCK) signaling pathway. Administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) successfully induced chronic UC in rats, while the treatment effect of SSP was evaluated by body weight change, colonic length, colonic weight, colonic weight index, histological injury score, and pathological injury score after colitis rats were treated for 7 days. TNF-α and IL-1β levels were analyzed by ELISA, and the proteins of PI3K/Akt and RhoA/ROCK signaling pathway and junction proteins expression were measured by western blotting assay, and the distribution of Claudin 5 was shown by immunofluorescence. SSP significantly improved the clinical symptoms of colitis in rats and reduced the expression of p-RhoA, ROCK1, PI3K, and Akt in the colon mucosa, while it increased the expression of p-Rac and related proteins (Claudin-5, JAM1, VE-cadherin, and Connexin 43). In addition, SSP increased p-AMPKα and PTEN proteins expression, decreased Notch1 level, and hinted that activation of the PI3K/Akt signaling pathway was inhibited. In conclusion, SSP effectively treated chronic colitis induced by TNBS, which may have been achieved by inhibiting PI3K/Akt signal to suppress activation of the Rho/ROCK signaling pathway to finally maintain the integrity of the intestinal mucosal barrier.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yanzhen Li ◽  
Hong Zhang ◽  
Jingwen Yang ◽  
Muouyang Zhan ◽  
Xuefei Hu ◽  
...  

Abstract Background The P2Y12 receptor is a kind of purinoceptor that is engaged in platelet aggregation, and P2Y12 inhibitors have been used in clinical antithrombotic therapy. The P2Y12 receptor in microglia induces interleukin-1β (IL-1β) expression, which is a key mediator of depression in the brain. Although peripheral P2Y12 is involved in neuropathic pain, whether P2Y12 expression in the medial prefrontal cortex (mPFC) is associated with comorbidities of visceral pain and depression remains unclear. Accumulating evidence suggests that electroacupuncture (EA) is effective in treating inflammatory bowel disease (IBD), but its mechanism is unknown. This study aimed to determine whether P2Y12 expression in the mPFC is associated with comorbidities of visceral pain and depression in IBD and whether EA treats IBD by targeting the P2Y12 receptor. Methods We used 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced IBD mice. P2Y12 short hairpin RNA (shRNA) was stereotaxically injected into the bilateral mPFC. EA was performed on bilateral “Dachangshu” (BL25) acupoints once a day for 7 days. Von Frey filaments and colorectal distension were used to detect the mechanical pain threshold and visceral pain sensitivity. The sucrose preference test, tail suspension test and forced swimming test were used to evaluate depression in mice. Western blotting was used to test the expression of P2Y12 and IL-1β. Immunofluorescence staining was used to assess microglial activity. Results We found that IBD mice presented visceral pain and depression associated with increased P2Y12 expression in the mPFC. P2Y12 shRNA significantly attenuated visceral pain and depression in IBD mice. P2Y12 shRNA significantly downregulated IL-1β expression and inhibited the activation of microglia in the mPFC of IBD mice. Meanwhile, EA played a similar role of P2Y12 shRNA. EA significantly downregulated P2Y12 expression, weakened the activation of microglia, and then inhibited IL-1β expression in the mPFC, thus relieving visceral pain and depression in IBD mice. Conclusion The present study provided new ideas that the P2Y12 receptor in the mPFC could be a new target for the treatment of comorbid visceral pain and depression by EA. This may not only deepen our understanding of the analgesic and antidepressant mechanisms of EA but also promote the application of EA to treat IBD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Haley A. Vecchiarelli ◽  
Robert J. Aukema ◽  
Catherine Hume ◽  
Vincent Chiang ◽  
Maria Morena ◽  
...  

Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis—providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1695
Author(s):  
Rebecca P. Chow ◽  
Kevin Nguyen ◽  
Wenyu Gou ◽  
Erica Green ◽  
Katherine Morgan ◽  
...  

Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yumei Rong ◽  
Ge Hong ◽  
Na Zhu ◽  
Yang Liu ◽  
Yong Jiang ◽  
...  

Ulcerative colitis (UC), a chronic, nonspecific inflammatory bowel disease characterized by continuous and diffuse inflammatory changes in the colonic mucosa, requires novel treatment method. Photodynamic therapy (PDT), as a promising physico-chemical treatment method, were used to treat UC rats’ model with novel photosensitizer LD4 in this paper, the treatment effect and mechanism was investigated. LD4-PDT could improve the survival rate of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC model rats, decrease expression of interleukin (IL)-6, IL-1, tumor necrosis factor (TNF)-α, malondialdehyde (MDA), myeloperoxidase (MPO) and increase the expression of glutathione (GSH) and superoxide oxidase (SOD), while protecting the integrity of the intestinal epithelium. LD4-PDT treatment could rebuild the intestinal microflora composition and reprogram the colonic protein profiles in TNBS-induced rats to almost the normal state. Proteomics analysis based upon TNBS-induced UC model rats revealed that Amine oxidase copper-containing 1 (AOC1) was a potential target of LD4-PDT. Novel photosensitizer agent LD4-PDT represents an efficient treatment method for UC, and AOC1 may be a promising target.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenli You ◽  
Zitong Xu ◽  
Aiting Di ◽  
Penglin Liu ◽  
Chengjian Pang ◽  
...  

Objective. Tong Xie Yao Fang (TXYF) is a classic and effective prescription in traditional Chinese medicine which is used to treat ulcerative colitis (UC). Our study investigated the effect of TXYF on Hippo pathway activation in UC-induced intestinal mucosa injury and explored the possible mechanism. Method. After ulcerative colitis was successfully induced by trinitrobenzene sulfonic acid (TNBS), 48 Sprague Dawley (SD) rats were randomly divided into a control group, model group, TXYF group, and sulfasalazine group and treated with the corresponding drugs for 28 days. The parameters including body weight, colon length, spleen index, and disease activity index (DAI) and histopathological characteristics were assessed. The myeloperoxidase (MPO) activity and IL-6 level in the colon mucosa were determined with the corresponding commercial kits. The expressions of the Hippo pathway components YAP1, TAZ, P-YAP, and LATS1 were detected in the colon mucosa of each group on different stages by quantitative real-time PCR (qRT-PCR) and western blotting. Immunohistochemical staining was used to evaluate the growth and apoptosis of the colon epithelium. Result. TXYF significantly improved the weight loss, colonic shortening, DAI, spleen enlargement, and histopathological score of the rats with TNBS-induced UC. TXYF also reduced the MPO activity and expression of IL-6 in the colon mucosa. Furthermore, treatment with TXYF significantly increased YAP1 expression in the early stage (3–7 days) and significantly decreased YAP1 expression in the late stage (14–28 days). In the early stage, TXYF inhibited Hippo pathway activity, which promoted proliferation and regeneration of the intestinal mucosa. In the late stage, the Hippo pathway was activated, thereby inhibiting apoptosis and promoting intestinal mucosal differentiation. Conclusion. TXYF alleviated the inflammatory response and promoted mucosal healing in rats with UC, which was probably achieved through the Hippo pathway. These results indicated that TXYF was a potential therapy for treating UC.


Export Citation Format

Share Document