Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

dromedary camel
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 122)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jade Lee Lee Teng ◽  
Ulrich Wernery ◽  
Hwei Huih Lee ◽  
Joshua Fung ◽  
Sunitha Joseph ◽  
...  

Since the emergence of Middle East Respiratory Syndrome (MERS) in 2012, there have been a surge in the discovery and evolutionary studies of viruses in dromedaries. Here, we investigated a herd of nine dromedary calves from Umm Al Quwain, the United Arab Emirates that developed respiratory signs. Viral culture of the nasal swabs from the nine calves on Vero cells showed two different types of cytopathic effects (CPEs), suggesting the presence of two different viruses. Three samples showed typical CPEs of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in Vero cells, which was confirmed by partial RdRp gene sequencing. Complete genome sequencing of the three MERS-CoV strains showed that they belonged to clade B3, most closely related to another dromedary MERS-CoV isolate previously detected in Dubai. They also showed evidence of recombination between lineages B4 and B5 in ORF1ab. Another three samples showed non-typical CPEs of MERS-CoV with cell rounding, progressive degeneration, and detachment. Electron microscopy revealed spherical viral particles with peplomers and diameter of about 170nm. High-throughput sequencing and metagenomic analysis showed that the genome organization (3'-N-P-M-F-HN-L-5') was typical of paramyxovirus. They possessed typical genome features similar to other viruses of the genus Respirovirus, including a conserved motif 323FAPGNYALSYAM336 in the N protein, RNA editing sites 5'-717AAAAAAGGG725-3', and 5'-1038AGAAGAAAGAAAGG1051-3' (mRNA sense) in the P gene with multiple polypeptides coding capacity, a nuclear localization signal sequence 245KVGRMYSVEYCKQKIEK261 in the M protein, a conserved sialic acid binding motif 252NRKSCS257 in the HN protein, conserved lengths of the leader (55nt) and trailer (51nt) sequences, total coding percentages (92.6–93.4%), gene-start (AGGANNAAAG), gene-end (NANNANNAAAAA), and trinucleotide intergenic sequences (CTT, mRNA sense). Phylogenetic analysis of their complete genomes showed that they were most closely related to bovine parainfluenza virus 3 (PIV3) genotype C strains. In the phylogenetic tree constructed using the complete L protein, the branch length between dromedary camel PIV3 (DcPIV3) and the nearest node is 0.04, which is >0.03, the definition used for species demarcation in the family Paramyxoviridae. Therefore, we show that DcPIV3 is a novel species of the genus Respirovirus that co-circulated with MERS-CoV in a dromedary herd in the Middle East.


2021 ◽  
pp. 106600
Author(s):  
Ved Prakash ◽  
Basanti Jyotsana ◽  
Sumant Vyas ◽  
R.K. Sawal

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2326
Author(s):  
Rachel Shirazi ◽  
Paolo Pozzi ◽  
Yael Gozlan ◽  
Marina Wax ◽  
Yaniv Lustig ◽  
...  

Background: Hepatitis E (HEV) is an emerging cause of viral hepatitis worldwide. Swine carrying hepatitis E genotype 3 (HEV-3) are responsible for the majority of chronic viral hepatitis cases in developed countries. Recently, genotype 7 (HEV-7), isolated from a dromedary camel in the United Arab Emirates, was also associated with chronic viral hepatitis in a transplant recipient. In Israel, chronic HEV infection has not yet been reported, although HEV seroprevalence in humans is ~10%. Camels and swine are >65% seropositive. Here we report on the isolation and characterization of HEV from local camels and swine. Methods: Sera from camels (n = 142), feces from swine (n = 18) and blood from patients suspected of hepatitis E (n = 101) were collected during 2017–2020 and used to detect and characterize HEV sequences. Results: HEV-3 isolated from local swine and the camel-derived HEV-7 sequence were highly similar to HEV-3f and HEV-7 sequences (88.2% and 86.4%, respectively) related to viral hepatitis. The deduced amino acid sequences of both isolates were also highly conserved (>98%). Two patients were HEV-RNA positive; acute HEV-1 infection could be confirmed in one of them. Discussion: The absence of any reported HEV-3 and HEV-7 infection in humans remains puzzling, especially considering the reported seroprevalence rates, the similarity between HEV sequences related to chronic hepatitis and the HEV genotypes identified in swine and camels in Israel.


2021 ◽  
pp. 2596-2601
Author(s):  
Somjit Chaiwattanarungruengpaisan ◽  
Natthaphat Ketchim ◽  
Wanvisa Surarith ◽  
Metawee Thongdee ◽  
Phirom Prompiram ◽  
...  

Background and Aim: The pandemic (H1N1) 2009 influenza (H1N1pdm09) virus has affected both human and animal populations worldwide. The transmission of the H1N1pdm09 virus from humans to animals is increasingly more evident. Captive animals, particularly zoo animals, are at risk of H1N1pdm09 virus infection through close contact with humans. Evidence of exposure to the H1N1pdm09 virus has been reported in several species of animals in captivity. However, there is limited information on the H1N1pdm09 virus infection and circulation in captive animals. To extend the body of knowledge on exposure to the H1N1pdm09 virus among captive animals in Thailand, our study investigated the presence of antibodies against the H1N1pdm09 virus in two captive animals: Camelids and Eld's deer. Materials and Methods: We investigated H1N1pdm09 virus infection among four domestic camelid species and wild Eld's deer that were kept in different zoos in Thailand. In total, 72 archival serum samples from camelid species and Eld's deer collected between 2013 and 2014 in seven provinces in Thailand were analyzed for influenza antibodies using hemagglutination inhibition (HI), microneutralization, and western blotting (WB) assays. Results: The presence of antibodies against the H1N1pdm09 virus was detected in 2.4% (1/42) of dromedary camel serum samples and 15.4% (2/13) of Eld's deer serum samples. No antibodies were detected in the rest of the serum samples derived from other investigated camelids, including Bactrian camels (0/3), alpacas (0/5), and llamas (0/9). The three positive serum samples showed HI antibody titers of 80, whereas the neutralization titers were in the range of 320-640. Antibodies specific to HA and NP proteins in the H1N1pdm09 virus were detected in positive camel serum samples using WB. Conversely, the presence of the specific antibodies in the positive Eld's deer serum samples could not be determined using WB due to the lack of commercially labeled secondary antibodies. Conclusion: The present study provided evidence of H1N1pdm09 virus infection in the captive dromedary camel and Eld's deer in Thailand. Our findings highlight the need for continuous surveillance for influenza A virus in the population of dromedary camels and Eld's deer. The susceptible animal populations in close contact with humans should be closely monitored. Further study is warranted to determine whether Eld's deer are indeed a competent reservoir for human influenza virus.


Author(s):  
Hayate Javed ◽  
Sumisha Rehmathulla ◽  
Saeed Tariq ◽  
Mahmoud A. Ali ◽  
Bright Starling Emerald ◽  
...  

Export Citation Format

Share Document