Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

computation offloading
Recently Published Documents


TOTAL DOCUMENTS

1299
(FIVE YEARS 660)

H-INDEX

49
(FIVE YEARS 9)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-23
Author(s):  
Weiwei Lin ◽  
Tiansheng Huang ◽  
Xin Li ◽  
Fang Shi ◽  
Xiumin Wang ◽  
...  

In addition to the stationary mobile edge computing (MEC) servers, a few MEC surrogates that possess a certain mobility and computation capacity, e.g., flying unmanned aerial vehicles (UAVs) and private vehicles, have risen as powerful counterparts for service provision. In this article, we design a two-stage online scheduling scheme, targeting computation offloading in a UAV-assisted MEC system. On our stage-one formulation, an online scheduling framework is proposed for dynamic adjustment of mobile users' CPU frequency and their transmission power, aiming at producing a socially beneficial solution to users. But the major impediment during our investigation lies in that users might not unconditionally follow the scheduling decision released by servers as a result of their individual rationality. In this regard, we formulate each step of online scheduling on stage one into a non-cooperative game with potential competition over the limited radio resource. As a solution, a centralized online scheduling algorithm, called ONCCO, is proposed, which significantly promotes social benefit on the basis of the users' individual rationality. On our stage-two formulation, we are working towards the optimization of UAV computation resource provision, aiming at minimizing the energy consumption of UAVs during such a process, and correspondingly, another algorithm, called WS-UAV, is given as a solution. Finally, extensive experiments via numerical simulation are conducted for an evaluation purpose, by which we show that our proposed algorithms achieve satisfying performance enhancement in terms of energy conservation and sustainable service provision.


2022 ◽  
Author(s):  
Bin Xu ◽  
Tao Deng ◽  
Yichuan Liu ◽  
Yunkai Zhao ◽  
Zipeng Xu ◽  
...  

Abstract The combination of idle computing resources in mobile devices and the computing capacity of mobile edge servers enables all available devices in an edge network to complete all computing tasks in coordination to effectively improve the computing capacity of the edge network. This is a research hotspot for 5G technology applications. Previous research has focused on the minimum energy consumption and/or delay to determine the formulation of the computational offloading strategy but neglected the cost required for the computation of collaborative devices (mobile devices, mobile edge servers, etc.); therefore, we proposed a cost-based collaborative computation offloading model. In this model, when a task requests these devices' assistance in computing, it needs to pay the corresponding calculation cost; and on this basis, the task is offloaded and computed. In addition, for the model, we propose an adaptive neighborhood search based on simulated annealing algorithm (ANSSA) to jointly optimize the offloading decision and resource allocation with the goal of minimizing the sum of both the energy consumption and calculation cost. The adaptive mechanism enables different operators to update the probability of selection according to historical experience and environmental perception, which makes the individual evolution have certain autonomy. A large number of experiments conducted on different scales of mobile user instances show that the ANSSA can obtain satisfactory time performance with guaranteed solution quality. The experimental results demonstrate the superiority of the mobile edge computing (MEC) offloading system. It is of great significance to strike a balance between maintaining the life cycle of smart mobile devices and breaking the performance bottleneck of MEC servers.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Ping Qi

Traditional intent recognition algorithms of intelligent prosthesis often use deep learning technology. However, deep learning’s high accuracy comes at the expense of high computational and energy consumption requirements. Mobile edge computing is a viable solution to meet the high computation and real-time execution requirements of deep learning algorithm on mobile device. In this paper, we consider the computation offloading problem of multiple heterogeneous edge servers in intelligent prosthesis scenario. Firstly, we present the problem definition and the detail design of MEC-based task offloading model for deep neural network. Then, considering the mobility of amputees, the mobility-aware energy consumption model and latency model are proposed. By deploying the deep learning-based motion intent recognition algorithm on intelligent prosthesis in a real-world MEC environment, the effectiveness of the task offloading and scheduling strategy is demonstrated. The experimental results show that the proposed algorithms can always find the optimal task offloading and scheduling decision.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Muhammad Arif ◽  
F. Ajesh ◽  
Shermin Shamsudheen ◽  
Muhammad Shahzad

The use of application media, gamming, entertainment, and healthcare engineering has expanded as a result of the rapid growth of mobile technologies. This technology overcomes the traditional computing methods in terms of communication delay and energy consumption, thereby providing high reliability and bandwidth for devices. In today’s world, mobile edge computing is improving in various forms so as to provide better output and there is no room for simple computing architecture for MEC. So, this paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks is done using the LSTM algorithm, the strategy for computation offloading of mobile devices is based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling helps to optimize the edge computing offloading model. Experiments show that our proposed architecture, which consists of an LSTM-based offloading technique and routing (LSTMOTR) algorithm, can efficiently decrease total task delay with growing data and subtasks, reduce energy consumption, and bring much security to the devices due to the firewall nature of LSTM.


2022 ◽  
Author(s):  
Liping Qian

<div>The integration of Maritime Internet of Things (M-IoT) technology and unmanned aerial/surface vehicles (UAVs/USVs) has been emerging as a promising navigational information technique in intelligent ocean systems. With the unprecedented increase of computation-intensive yet latency sensitive marine mobile Internet services, mobile edge computing (MEC) and non-orthogonal multiple access (NOMA) have been envisioned as promising approaches to providing with the low-latency as well as reliable computing services and ultra-dense connectivity. In this paper, we investigate the energy consumption minimization based energy-efficient MEC via cooperative NOMA for the UAV-assisted M-IoT networks. We consider that USVs offload their computation-workload to the UAV equipped with the edge-computing server subject to the UAV mobility. To improve the energy efficiency of offloading transmission and workload computation, we focus on minimizing the total energy consumption by jointly optimizing the USVs’ offloaded workload, transmit power, computation resource allocation as well as the UAV trajectory subject to the USVs’ latency requirements. Despite the nature of mixed discrete and non-convex programming of the formulated problem, we exploit the vertical decomposition and propose a two-layered algorithm for solving it efficiently. Specifically, the top-layered algorithm is proposed to solve the problem of optimizing the UAV trajectory based on the idea of Deep Reinforcement Learning (DRL), and the underlying algorithm is proposed to optimize the underlying multi-domain resource allocation problem based on the idea of the Lagrangian multiplier method. Numerical results are provided to validate the effectiveness of our proposed algorithms as well as the performance advantage of NOMA-enabled computation offloading in terms of overall energy consumption.</div>


2022 ◽  
Author(s):  
Liping Qian

<div>The integration of Maritime Internet of Things (M-IoT) technology and unmanned aerial/surface vehicles (UAVs/USVs) has been emerging as a promising navigational information technique in intelligent ocean systems. With the unprecedented increase of computation-intensive yet latency sensitive marine mobile Internet services, mobile edge computing (MEC) and non-orthogonal multiple access (NOMA) have been envisioned as promising approaches to providing with the low-latency as well as reliable computing services and ultra-dense connectivity. In this paper, we investigate the energy consumption minimization based energy-efficient MEC via cooperative NOMA for the UAV-assisted M-IoT networks. We consider that USVs offload their computation-workload to the UAV equipped with the edge-computing server subject to the UAV mobility. To improve the energy efficiency of offloading transmission and workload computation, we focus on minimizing the total energy consumption by jointly optimizing the USVs’ offloaded workload, transmit power, computation resource allocation as well as the UAV trajectory subject to the USVs’ latency requirements. Despite the nature of mixed discrete and non-convex programming of the formulated problem, we exploit the vertical decomposition and propose a two-layered algorithm for solving it efficiently. Specifically, the top-layered algorithm is proposed to solve the problem of optimizing the UAV trajectory based on the idea of Deep Reinforcement Learning (DRL), and the underlying algorithm is proposed to optimize the underlying multi-domain resource allocation problem based on the idea of the Lagrangian multiplier method. Numerical results are provided to validate the effectiveness of our proposed algorithms as well as the performance advantage of NOMA-enabled computation offloading in terms of overall energy consumption.</div>


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Abdul Waheed ◽  
Munam Ali Shah ◽  
Syed Muhammad Mohsin ◽  
Abid Khan ◽  
Carsten Maple ◽  
...  

2022 ◽  
pp. 1-8
Author(s):  
Xian Li ◽  
Liang Huang ◽  
Hui Wang ◽  
Suzhi Bi ◽  
Ying-Jun Angela Zhang

2022 ◽  
pp. 103-128
Author(s):  
Yuanming Shi ◽  
Kai Yang ◽  
Zhanpeng Yang ◽  
Yong Zhou

Export Citation Format

Share Document