Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

angular range
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 184
Author(s):  
Francesca Uccheddu ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
Monica Carfagni

Home-based rehabilitation is becoming a gold standard for patient who have undergone knee arthroplasty or full knee replacement, as it helps healthcare costs to be minimized. Nevertheless, there is a chance of increasing adverse health effects in case of home care, primarily due to the patients’ lack of motivation and the doctors’ difficulty in carrying out rigorous supervision. The development of devices to assess the efficient recovery of the operated joint is highly valued both for the patient, who feels encouraged to perform the proper number of activities, and for the doctor, who can track him/her remotely. Accordingly, this paper introduces an interactive approach to angular range calculation of hip and knee joints based on the use of low-cost devices which can be operated at home. First, the patient’s body posture is estimated using a 2D acquisition method. Subsequently, the 3D posture is evaluated by using the depth information coming from an RGB-D sensor. Preliminary results show that the proposed method effectively overcomes many limitations by fusing the results obtained by the state-of-the-art robust 2D pose estimation algorithms with the 3D data of depth cameras by allowing the patient to be correctly tracked during rehabilitation exercises.


2021 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Jelena Vukalović ◽  
Jelena B. Maljković ◽  
Francisco Blanco ◽  
Gustavo García ◽  
Branko Predojević ◽  
...  

We report the results of the measurements and calculations of the absolute differential elastic electron scattering cross-sections (DCSs) from sevoflurane molecule (C4H3F7O). The experimental absolute DCSs for elastic electron scattering were obtained for the incident electron energies from 50 eV to 300 eV, and for scattering angles from 25° to 125° using a crossed electron/target beams setup and the relative flow technique for calibration to the absolute scale. For the calculations, we have used the IAM-SCAR+I method (independent atom model (IAM) applying the screened additivity rule (SCAR) with interference terms included (I)). The molecular cross-sections were obtained from the atomic data by using the SCAR procedure, incorporating interference term corrections, by summing all the relevant atomic amplitudes, including the phase coefficients. In this approach, we obtain the molecular differential scattering cross-section (DCS), which, integrated over the scattered electron angular range, gives the integral scattering cross-section (ICS). Calculated cross-sections agree very well with experimental results, in the whole energy and angular range.


ACS Nano ◽  
2021 ◽  
Author(s):  
Kezhen Yin ◽  
Yurui Qu ◽  
Steven E. Kooi ◽  
Wei Li ◽  
Jingxing Feng ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Andrey V. Golitsyn ◽  
Alexandr A. Golitsyn ◽  
Alexander K. Dmitriev ◽  
Natalia A. Seyfi
Keyword(s):  

2021 ◽  
Vol 2015 (1) ◽  
pp. 012005
Author(s):  
A A Antonov ◽  
M V Gorkunov

Abstract We design metasurfaces based on silicon films with smooth relief described by several Fourier harmonics and study their ability to redirect the refracted light over a wide angular range controlled by subtle variations of the optical setup. We use semi-analytical approach based on the Rayleigh hypothesis as well as full-scale numerical solutions to optimize the relief shape. To illustrate the reconfigurability potential, we design metasurfaces efficiently redirecting the refracted light from 83° to −73° with respect to the normal, when the angle of incidence is varied from 0° to 2°, and from 80° to −74°, when the substrate permittivity is altered from 2.3 to 2.2.


2021 ◽  
Author(s):  
Tomoko Nakayama ◽  
Yoshihisa Takayama ◽  
Chiemi Fujikawa ◽  
Kashiko Kodate

2021 ◽  
pp. 1-11
Author(s):  
Buxin Chen ◽  
Zheng Zhang ◽  
Dan Xia ◽  
Emil Y. Sidky ◽  
Xiaochuan Pan

BACKGROUND: Interest exists in dual-energy computed tomography (DECT) imaging with scanning arcs of limited-angular ranges (LARs) for reducing scan time and radiation dose, and for enabling scan configurations of C-arm CT that can avoid possible collision between the rotating X-ray tube/detector and the imaged subject. OBJECTIVE: In this work, we investigate image reconstruction for a type of configurations of practical DECT interest, referred to as the two-orthogonal-arc configuration, in which low- and high-kVp data are collected over two non-overlapping arcs of equal LAR α, ranging from 30° to 90°, separated by 90°. The configuration can readily be implemented, e.g., on CT with dual sources separated by 90° or with the slow-kVp-switching technique. METHODS: The directional-total-variation (DTV) algorithm developed previously for image reconstruction in conventional, single-energy CT is tailored to enable image reconstruction in DECT with two-orthogonal-arc configurations. RESULTS: Performing visual inspection and quantitative analysis of monochromatic images obtained and effective atomic numbers estimated, we observe that the monochromatic images of the DTV algorithm from LAR data are with substantially reduced LAR artifacts, which are observed otherwise in those of existing algorithms, and thus visually correlate reasonably well, in terms of metrics PCC and nMI, with their reference images obtained form full-angular-range data. In addition, effective atomic numbers estimated from LAR data of DECT with two-orthogonal-arc configurations are in reasonable agreement, with relative errors up to ∼  10%, with those estimated from full-angular-range data in DECT. CONCLUSIONS: The results acquired in the work may yield insights into the design of LAR configurations of practical dual-energy application relevance in diagnostic CT or C-arm CT imaging.


Author(s):  
Buxin Chen ◽  
Zheng Zhang ◽  
Dan Xia ◽  
Emil Y Sidky ◽  
Xiaochuan Pan

2021 ◽  
Author(s):  
Brian Daniel Scannell ◽  
Yueng-Djern Lenn ◽  
Tom P. Rippeth

Abstract. Turbulent mixing is a key process in the transport of heat, salt and nutrients in the marine environment, with fluxes commonly derived directly from estimates of the turbulent kinetic energy dissipation rate, ϵ. Time series of ϵ estimates are therefore useful in helping to identify and quantify key biogeochemical processes. Estimates of ϵ are typically derived using shear microstructure profilers, which provide high resolution vertical profiles, but require a surface vessel, incurring costs and limiting the duration of observations and the conditions under which they can be made. The velocity structure function method can be used to determine time series of ϵ estimates using along-beam velocity measurements from suitably configured acoustic Doppler current profilers (ADCP). Shear in the background current can bias such estimates, therefore standard practice is to deduct the mean or linear trend from the along-beam velocity over the period of an observation burst. This procedure is effective if the orientation of the ADCP to the current remains constant over the burst period. However, if the orientation of a tethered ADCP varies, a proportion of the velocity difference between bins is retained in the structure function and the resulting ϵ estimates will be biased. Long-term observations from a mooring with three inline ADCP show the heading oscillating with an angular range that depends on the flow speed; from large, slow oscillations at low flow speeds to smaller, higher frequency oscillations at higher flow speeds. The mean tilt was also determined by the flow speed, whilst the tilt oscillation range was primarily determined by surface wave height. Synthesised along-beam velocity data for an ADCP subject to sinusoidal oscillation in a sheared flow indicates that the retained proportion of the potential bias is primarily determined by the angular range of the oscillation, with the impact varying between beams depending on the mean heading relative to the flow. Since the heading is typically unconstrained in a tethered mooring, heading oscillation is likely to be the most significant influence on the retained bias for a given level of shear. Use of an instrument housing designed to reduce oscillation would mitigate the impact, whilst if the shear is linear over the observation depth range, the bias can be corrected using a modified structure function method designed to correct for bias due to surface waves.


Export Citation Format

Share Document