Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

automotive radars
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 42)

H-INDEX

17
(FIVE YEARS 1)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 578
Author(s):  
Jung Min Pak

Automotive radars, which are used for preceding vehicle tracking, have attracted significant attention in recent years. However, the false measurements that occur in cluttered roadways hinders the tracking process in vehicles; thus, it is essential to develop automotive radar systems that are robust against false measurements. This study proposed a novel track formation algorithm to initialize the preceding vehicle tracking in automotive radar systems. The proposed algorithm is based on finite impulse response filtering, and exhibited significantly higher accuracy in highly cluttered environments than a conventional track formation algorithm. The excellent performance of the proposed algorithm was demonstrated using extensive simulations under real conditions.


2021 ◽  
Author(s):  
Swagata Sarkar ◽  
Sivakami Nagappan ◽  
Shafin Kadhir Badhusha

Millimetre Wave frequencies (30–300 GHz) can be used for different major applications of modern world like telecommunications, security screening, imaging, automotive radars, military applications, remote sensing, radio astronomy and many more. The internationally reserved frequency spectrum is used for Radio Frequency Energy. In this work 64 GHz antennas are compared with different design and a comparative study is taken. In this work Microstrip patch antenna with carpet architecture, and fractal island are designed and compared. The general comparative parameters for antenna are directivity, gain, return loss, bandwidth, specific absorption rate etc. After the comparison, it is found that return loss gave better result for carpet design at 64 GHz compare to fractal island design.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ayman H. Dorrah ◽  
George V. Eleftheriades

AbstractEmerging technologies such as 5G communication systems, autonomous vehicles and satellite Internet have led to a renewed interest in 2D antennas that are capable of generating fixed/scannable pencil beams. Although traditional active phased arrays are technologically suitable for these applications, there are cases where other alternatives are more attractive, especially if they are simpler and less costly to design and fabricate. Recently, the concept of the Peripherally-Excited (PEX) antenna array has been proposed, promising a sizable reduction in the active-element count, especially when compared with traditional phased arrays. Albeit at the price of exhibiting some constraints on the possible beam-pointing directions. Here, we demonstrate the first practical implementation of the PEX antenna concept, and the proposed design is capable of generating single or multiple independently scannable pencil beams at broadside and tilted radiation directions, from a shared radiating aperture. The proposed structure is also easily scalable to higher millimeter-wave frequencies, and can be particularly useful in MIMO and duplex antenna applications, commonly encountered in automotive radars, among others.


2021 ◽  
Author(s):  
Yin Zhi Ng ◽  
Benjamin Choi ◽  
Robby Tan ◽  
Lionel Heng

Author(s):  
O. I. Bureneva ◽  
I. G. Gorbunov ◽  
G. V. Komarov ◽  
A. A. Konovalov ◽  
M. S. Kupriyanov ◽  
...  

Introduction. Automotive radars are the main tools for providing traffic safety. The development of such radars involve a number of technical difficulties due to the manufacture of high-precision extremely high-frequency (EHF) printed circuit boards. To facilitate the process of creating such devices, the existing algorithms for radar information processing should be debugged using prototypes from manufacturers of mm-band transceivers. However, the parameters of such boards are not known in advance, and the actual operating conditions of the as-produced automotive radars raise new challenges to target tracking algorithms. Therefore, checking the performance of such boards is a relevant research problem.Aim. To evaluate the performance of a millimeter-wave automotive radar prototype and to test target tracking algorithms using this prototype.Materials and methods. An original target tracking method was used, which considers the constraints on the use of additional data sources about the radar carrier movement.Results. An experimental performance evaluation of a 77 GHz automotive radar prototype was carried out. The effectiveness of primary processing for the target class “vehicle” in the millimetre range was checked. Original algorithms for target tracking were proposed and tested.Conclusion. The obtained results show that the prototype board of a transceiver chip is capable of testing tracking algorithms without creating an own automotive radar prototype. Thus, the developmental process can be significantly shortened. Moreover, after creating a hardware solution, the developer obtains a reference device to test and configure an own product without using extremely expensive and rare EHF equipment.


Author(s):  
A. A. Kuzin ◽  
A. V. Miakinkov ◽  
S. A. Shabalin

Introduction. Modern vehicles are equipped with radars, which serve as the main sensors of driver assistance systems detecting objects in all weather conditions. Antenna arrays (AA) are the most common type of radar antennas. The coefficient of mutual coupling between adjacent antenna channels has a significant effect on the formed radiation pattern (RP) of an AA. This aspect is important for achieving the required values of gain and side-lobe level (SLL). This article analyses the effect of the proposed design solutions on the main parameters of an automotive radar AA, in particular, on the mutual coupling coefficient between the channels and the SLL of the DP.Aim. To develop an optimal approach to constructing an AA topology in terms of reducing the level of mutual influence of adjacent array channels and obtaining a DP with specified characteristics.Materials and methods. To achieve the required parameters of the designed AA topology, the coplanar and microstrip lines were calculated using the finite element method and shield models.Results. An electrodynamic modeling of a millimetre-wave AA was carried out. The effect of coplanar transmission lines on the RP was shown. The features of applying shielding elements in the AA structure were investigated. Antenna patterns were obtained for both an AA designed based on coplanar transmission lines and that based on the use of shields. The conducted comparative analysis determined the parameters of the substrate optimal for achieving a better level of decoupling between adjacent antenna channels. The values of AA RP obtained during modeling were presented.Conclusion. The use of coplanar transmission lines can significantly reduce the SLL of the DP in the elevation plane. When implementing the module structure of an array (using of sub-arrays), the power dividers are realized. In this case, instead of coplanar lines, it is advisable to use specific microstrip constructions covered with shielding surfaces. In this case, the formation of a given amplitude-phase distribution over aperture is possible. A comparative analysis of the AA topologies with different substrates was carried out with the purpose of achieving improved decoupling. The obtained values of the coefficient of mutual influence of adjacent array channels correspond to those of modern AA of automotive radars. The methods of reducing the parasitic radiation of transmission lines were considered. The AA RP obtained via electrodynamic modeling were presented. The use of a thin substrate with a higher dielectric constant makes it possible to improve the AA characteristics.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3962
Author(s):  
Liping Kui ◽  
Sai Huang ◽  
Zhiyong Feng

Due to the increasing number of vehicles equipped with millimeter wave (mmWave) radars, interference among automotive radars is becoming a major issue. This paper explores the automotive radar interference in both two-lane and multi-lane scenarios using stochastic geometry. We derive closed-form expressions for mean and variance of interference power considering directional antenna with constant and Gaussian decaying gains. In view of the sensitivity of mmWave radar signals to the blockages, we propose a blockage model including partially and completely blocking, and then calculate the effective number of the interferers. By means of modeling randomness for interferers and blockages as Poisson point process, we characterize the statistics of radar interference under different conditions. We further utilize the interference characterization to estimate the successful ranging probability of automotive radars. These theoretical analyses are verified by using Monte Carlo simulations. The results show that the increasing interfering density and ranging distance largely degrade the radar detection performance, whereas the interference levels decrease as blockage intensity increases.


2021 ◽  
Author(s):  
Ming-Ming Li ◽  
You-Wen Zhang ◽  
Hong-Li Peng ◽  
Shi-Yu Sun ◽  
Jun-Fa Mao

Export Citation Format

Share Document