Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

intracellular acidification
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 26)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Pierre Santucci ◽  
Beren Aylan ◽  
Laure Botella ◽  
Elliott M Bernard ◽  
Claudio Bussi ◽  
...  

Mycobacterium tuberculosis (Mtb) segregates within multiple subcellular niches with different biochemical and biophysical properties that, upon treatment, may impact antibiotic distribution, accumulation, and efficacy. However, it remains unclear whether fluctuating intracellular microenvironments alter mycobacterial homeostasis and contribute to antibiotic enrichment and efficacy. Here, we describe a live dual-imaging approach to monitor host subcellular acidification and Mtb intrabacterial pH. By combining this approach with pharmacological and genetic perturbations, we show that Mtb can maintain its intracellular pH independently of the surrounding pH in human macrophages. Importantly, unlike bedaquiline (BDQ), isoniazid (INH) or rifampicin (RIF), the drug pyrazinamide (PZA) displays antibacterial efficacy by acting as protonophore which disrupts intrabacterial pH homeostasis in cellulo. By using Mtb mutants, we confirmed that intracellular acidification is a prerequisite for PZA efficacy in cellulo. We anticipate this imaging approach will be useful to identify host cellular environments that affect antibiotic efficacy against intracellular pathogens.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6957
Author(s):  
Xinyu Jiang ◽  
Mohammad Aqa Mohammadi ◽  
Yuan Qin ◽  
Zongshen Zhang

Psammosilene tunicoides is a unique perennial medicinal plant species native to the Southwestern regions of China. Its wild population is rare and endangered due to over-excessive collection and extended growth (4–5 years). This research shows that H+-ATPase activity was a key factor for oxalate-inducing programmed cell death (PCD) of P. tunicoides suspension cells. Oxalic acid (OA) is an effective abiotic elicitor that enhances a plant cell’s resistance to environmental stress. However, the role of OA in this process remains to be mechanistically unveiled. The present study evaluated the role of OA-induced cell death using an inverted fluorescence microscope after staining with Evans blue, FDA, PI, and Rd123. OA-stimulated changes in K+ and Ca2+ trans-membrane flows using a patch-clamp method, together with OA modulation of H+-ATPase activity, were further examined. OA treatment increased cell death rate in a dosage-and duration-dependent manner. OA significantly decreased the mitochondria activity and damaged its electron transport chain. The OA treatment also decreased intracellular pH, while the FC increased the pH value. Simultaneously, NH4Cl caused intracellular acidification. The OA treatment independently resulted in 90% and the FC led to 25% cell death rates. Consistently, the combined treatments caused a 31% cell death rate. Furthermore, treatment with EGTA caused a similar change in intracellular pH value to the La3+ and OA application. Combined results suggest that OA-caused cell death could be attributed to intracellular acidification and the involvement of OA in the influx of extracellular Ca2+, thereby leading to membrane depolarization. Here we explore the resistance mechanism of P. tunicoides cells against various stresses endowed by OA treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hong Il Choi ◽  
Sung-Won Hwang ◽  
Jongrae Kim ◽  
Byeonghyeok Park ◽  
EonSeon Jin ◽  
...  

AbstractMicroalgae can accumulate various carbon-neutral products, but their real-world applications are hindered by their CO2 susceptibility. Herein, the transcriptomic changes in a model microalga, Chlamydomonas reinhardtii, in a high-CO2 milieu (20%) are evaluated. The primary toxicity mechanism consists of aberrantly low expression of plasma membrane H+-ATPases (PMAs) accompanied by intracellular acidification. Our results demonstrate that the expression of a universally expressible PMA in wild-type strains makes them capable of not only thriving in acidity levels that they usually cannot survive but also exhibiting 3.2-fold increased photoautotrophic production against high CO2 via maintenance of a higher cytoplasmic pH. A proof-of-concept experiment involving cultivation with toxic flue gas (13 vol% CO2, 20 ppm NOX, and 32 ppm SOX) shows that the production of CO2-based bioproducts by the strain is doubled compared with that by the wild-type, implying that this strategy potentially enables the microalgal valorization of CO2 in industrial exhaust.


2021 ◽  
Vol 141 (10) ◽  
pp. S165
Author(s):  
T. Matsui ◽  
N. Kadono-Maekubo ◽  
Y. Suzuki ◽  
Y. Furuichi ◽  
K. Shiraga ◽  
...  

2021 ◽  
Vol 118 (17) ◽  
pp. e2020722118
Author(s):  
Takeshi Matsui ◽  
Nanako Kadono-Maekubo ◽  
Yoshiro Suzuki ◽  
Yuki Furuichi ◽  
Keiichiro Shiraga ◽  
...  

The stratum corneum (SC), the outermost epidermal layer, consists of nonviable anuclear keratinocytes, called corneocytes, which function as a protective barrier. The exact modes of cell death executed by keratinocytes of the upper stratum granulosum (SG1 cells) remain largely unknown. Here, using intravital imaging combined with intracellular Ca2+- and pH-responsive fluorescent probes, we aimed to dissect the SG1 death process in vivo. We found that SG1 cell death was preceded by prolonged (∼60 min) Ca2+ elevation and rapid induction of intracellular acidification. Once such intracellular ionic changes were initiated, they became sustained, irreversibly committing the SG1 cells to corneocyte conversion. Time-lapse imaging of isolated murine SG1 cells revealed that intracellular acidification was essential for the degradation of keratohyalin granules and nuclear DNA, phenomena specific to SC corneocyte formation. Furthermore, intravital imaging showed that the number of SG1 cells exhibiting Ca2+ elevation and the timing of intracellular acidification were both tightly regulated by the transient receptor potential cation channel V3. The functional activity of this protein was confirmed in isolated SG1 cells using whole-cell patch-clamp analysis. These findings provide a theoretical framework for improved understanding of the unique molecular mechanisms underlying keratinocyte-specific death mode, namely corneoptosis.


Acta Naturae ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 105-113
Author(s):  
A. L. Zefirov ◽  
R. D. Mukhametzyanov ◽  
A. V. Zakharov ◽  
K. A. Mukhutdinova ◽  
U. O. Odnoshivkina ◽  
...  

Intracellular protons play a special role in the regulation of presynaptic processes, since the functioning of synaptic vesicles and endosomes depends on their acidification by the H+-pump. Furthermore, transient acidification of the intraterminal space occurs during synaptic activity. Using microelectrode recording of postsynaptic responses (an indicator of neurotransmitter release) and exo-endocytic marker FM1-43, we studied the effects of intracellular acidification with propionate on the presynaptic events underlying neurotransmitter release. Cytoplasmic acidification led to a marked decrease in neurotransmitter release during the first minute of a 20-Hz stimulation in the neuromuscular junctions of mouse diaphragm and frog cutaneous pectoris muscle. This was accompanied by a reduction in the FM1-43 loss during synaptic vesicle exocytosis in response to the stimulation. Estimation of the endocytic uptake of FM1-43 showed no disruption in synaptic vesicle endocytosis. Acidification completely prevented the action of the cell-membrane permeable compound 24-hydroxycholesterol, which can enhance synaptic vesicle mobilization. Thus, the obtained results suggest that an increase in [H+]in negatively regulates neurotransmission due to the suppression of synaptic vesicle delivery to the sites of exocytosis at high activity. This mechanism can be a part of the negative feedback loop in regulating neurotransmitter release.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Frederik Van Leemputte ◽  
Ward Vanthienen ◽  
Stefanie Wijnants ◽  
Griet Van Zeebroeck ◽  
Johan M. Thevelein

ABSTRACT Whereas the yeast Saccharomyces cerevisiae shows great preference for glucose as a carbon source, a deletion mutant in trehalose-6-phosphate synthase, tps1Δ, is highly sensitive to even a few millimolar glucose, which triggers apoptosis and cell death. Glucose addition to tps1Δ cells causes deregulation of glycolysis with hyperaccumulation of metabolites upstream and depletion downstream of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The apparent metabolic barrier at the level of GAPDH has been difficult to explain. We show that GAPDH isozyme deletion, especially Tdh3, further aggravates glucose sensitivity and metabolic deregulation of tps1Δ cells, but overexpression does not rescue glucose sensitivity. GAPDH has an unusually high pH optimum of 8.0 to 8.5, which is not altered by tps1Δ. Whereas glucose causes short, transient intracellular acidification in wild-type cells, in tps1Δ cells, it causes permanent intracellular acidification. The hxk2Δ and snf1Δ suppressors of tps1Δ restore the transient acidification. These results suggest that GAPDH activity in the tps1Δ mutant may be compromised by the persistently low intracellular pH. Addition of NH4Cl together with glucose at high extracellular pH to tps1Δ cells abolishes the pH drop and reduces glucose-6-phosphate (Glu6P) and fructose-1,6-bisphosphate (Fru1,6bisP) hyperaccumulation. It also reduces the glucose uptake rate, but a similar reduction in glucose uptake rate in a tps1Δ hxt2,4,5,6,7Δ strain does not prevent glucose sensitivity and Fru1,6bisP hyperaccumulation. Hence, our results suggest that the glucose-induced intracellular acidification in tps1Δ cells may explain, at least in part, the apparent glycolytic bottleneck at GAPDH but does not appear to fully explain the extreme glucose sensitivity of the tps1Δ mutant. IMPORTANCE Glucose catabolism is the backbone of metabolism in most organisms. In spite of numerous studies and extensive knowledge, major controls on glycolysis and its connections to the other metabolic pathways remain to be discovered. A striking example is provided by the extreme glucose sensitivity of the yeast tps1Δ mutant, which undergoes apoptosis in the presence of just a few millimolar glucose. Previous work has shown that the conspicuous glucose-induced hyperaccumulation of the glycolytic metabolite fructose-1,6-bisphosphate (Fru1,6bisP) in tps1Δ cells triggers apoptosis through activation of the Ras-cAMP-protein kinase A (PKA) signaling pathway. However, the molecular cause of this Fru1,6bisP hyperaccumulation has remained unclear. We now provide evidence that the persistent drop in intracellular pH upon glucose addition to tps1Δ cells likely compromises the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a major glycolytic enzyme downstream of Fru1,6bisP, due to its unusually high pH optimum. Our work highlights the potential importance of intracellular pH fluctuations for control of major metabolic pathways.


Export Citation Format

Share Document