Transforming Growth Factor β 1 Stimulated Clone 22 D4 (TSC22D4) is an intrinsically disordered protein that regulates cellular and physiological processes such as cell proliferation, cellular senescence as well as hepatic glucose and lipid metabolism. The molecular mechanism of TSC22D4 action in these cellular and metabolic functions, however, remains largely elusive. Here, we identified TSC22D4 as a novel protein kinase B/Akt1 interacting protein, a critical mediator of insulin/PI3K signaling pathway implicated in diverse set of diseases including type 2 diabetes, obesity and cancer. TSC22D4 interacts with Akt1 not constitutively but rather in a regulatory manner. While glucose and insulin stimulation of cells or refeeding of mice impair the hepatic TSC22D4 Akt1 interaction, inhibition of mitochondria and oxidative stress, promote it; indicating that extra- and intra-cellular cues play a key role in controlling TSC22D4 Akt1 interaction. Our results also demonstrate that together with its dimerization domain, i.e. the TSC box, TSC22D4 requires its intrinsically disordered region (D2 domain) to interact with Akt1. To understand regulation of TSC22D4 function further, we employed tandem mass spectrometry and identified 15 novel phosphorylation sites on TSC22D4. Similar to TSC22D4-Akt1 interaction, TSC22D4 phosphorylation also responds to environmental signals such as starvation, mitochondrial inhibition and oxidative stress. Interestingly, 6 out of the 15 novel phosphorylation sites lie within the TSC22D4 D2 domain, which is required for TSC22D4-Akt1 interaction. Characterization of the regulation and function of these novel phosphorylation sites, in the future, will shed light on our understanding of the role of TSC22D4-Akt1 interaction in both cell biological and physiological functions. Overall, our findings postulate a model whereby TSC22D4 acts as an environmental sensor and interacts with Akt1 to regulate cell proliferation, cellular senescence as well as maintain metabolic homeostasis.