Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

aerobic scope
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Malthe Hvas ◽  
Samantha Bui

Parasites are widespread in nature where they affect energy budgets of hosts, and depending on the imposed pathogenic severity, this may reduce host fitness. However, the energetic costs of parasite infections are rarely quantified. In this study, we measured metabolic rates in recently seawater adapted Atlantic salmon (Salmo salar) infected with the ectoparasitic copepod Lepeophtheirus salmonis and used an aerobic scope framework to assess the potential ecological impact of this parasite-host interaction. The early chalimus stages of L. salmonis did not affect either standard or maximum metabolic rates. However, the later mobile pre-adult stages caused an increase in both standard and maximum metabolic rate yielding a preserved aerobic scope. Notably, standard metabolic rates were elevated by 26%, presumably caused by increased osmoregulatory burdens and costs of mobilizing immune responses. The positive impact on maximum metabolic rates was unexpected and suggests that fish are able to transiently overcompensate energy production to endure the burden of parasites and thus allow for continuation of normal activities. However, infected fish are known to suffer reduced growth, and this suggests that a trade-off exists in acquisition and assimilation of resources despite of an uncompromised aerobic scope. As such, when assessing impacts of environmental or biotic factors, we suggest that elevated routine costs may be a stronger predictor of reduced fitness than the available aerobic scope. Furthermore, studying effects on parasitized fish in an ecophysiological context deserves more attention, especially considering interacting effects of other stressors in the Anthropocene.


Author(s):  
Hanna Scheuffele ◽  
Francesc Rubio-Gracia ◽  
Timothy D. Clark

Aerobic metabolic scope is a popular metric to estimate the capacity for temperature-dependent performance in aquatic animals. Despite this popularity, little is known of the role of temperature acclimation and variability in shaping the breadth and amplitude of the thermal performance curve for aerobic scope. If daily thermal experience can modify the characteristics of the thermal performance curve, interpretations of aerobic scope data from the literature may be misguided. Here, tropical barramundi (Lates calcarifer) were acclimated for ∼4 months to cold (23℃), optimal (29℃) or warm (35℃) conditions, or to a daily temperature cycle between 23 and 35℃ (with a mean of 29℃). Measurements of aerobic scope were conducted every 3-4 weeks at three temperatures (23℃, 29℃ and 35℃), and growth rates were monitored. Acclimation to constant temperatures caused some changes in aerobic scope at the three measurement temperatures via adjustments in standard and maximal metabolic rates, and growth rates were lower in the 23℃-acclimated group compared with all other groups. The metabolic parameters and growth rates of the thermally variable group remained similar to those of the 29℃-acclimated group. Thus, acclimation to a variable temperature regime did not broaden the thermal performance curve for aerobic scope. We propose that aerobic scope thermal performance curves are more plastic in amplitude rather than breadth, and that the metabolic phenotype of at least some fish may be more dependent on the mean daily temperature rather than on the daily temperature range.


Author(s):  
Aleksandra Walczyńska ◽  
Mateusz Sobczyk

We united theoretical predictions of the factors responsible for the evolutionary significance of the temperature-size rule (TSR). We assumed that (i) the TSR is a response to temperature-dependent oxic conditions, (ii) body size decrease is a consequence of cell shrinkage in response to hypoxia, (iii) this response enables organisms to maintain a wide scope for aerobic performance, and (iv) it prevents a decrease in fitness. We examined three clones of the rotifer Lecane inermis exposed to three experimental regimes: mild hypoxia, severe hypoxia driven by a too high temperature, and severe hypoxia driven by an inadequate oxygen concentration. We compared the following traits in normoxia- and hypoxia-exposed rotifers: nuclear size (a proxy for cell size), body size, specific dynamic action (SDA, a proxy of aerobic metabolism) and two fitness measures, the population growth rate and eggs/female ratio. The results showed that (i) under mildly hypoxic conditions, our causative reasoning was correct, except that one of the clones decreased in body size without a decrease in nuclear size, and (ii) in more stressful environments, rotifers exhibited clone- and condition-specific responses, which were equally successful in terms of fitness levels. Our results indicate the importance of the rule testing conditions. The important conclusions were that (i) a body size decrease at higher temperatures enabled the maintenance of a wide aerobic scope under clone-specific, thermally optimal conditions, and (ii) this response was not the only option to prevent fitness reduction under hypoxia.


Aquaculture ◽  
2021 ◽  
pp. 737505
Author(s):  
GwangseokR. Yoon ◽  
Laura Groening ◽  
Cheryl N. Klassen ◽  
Catherine Brandt ◽  
W. Gary Anderson

2021 ◽  
Vol 8 ◽  
Author(s):  
Rachael M. Heuer ◽  
John D. Stieglitz ◽  
Christina Pasparakis ◽  
Ian C. Enochs ◽  
Daniel D. Benetti ◽  
...  

Mahi-mahi (Coryphaena hippurus) are a highly migratory pelagic fish, but little is known about what environmental factors drive their broad distribution. This study examined how temperature influences aerobic scope and swimming performance in mahi. Mahi were acclimated to four temperatures spanning their natural range (20, 24, 28, and 32°C; 5–27 days) and critical swimming speed (Ucrit), metabolic rates, aerobic scope, and optimal swim speed were measured. Aerobic scope and Ucrit were highest in 28°C-acclimated fish. 20°C-acclimated mahi experienced significantly decreased aerobic scope and Ucrit relative to 28°C-acclimated fish (57 and 28% declines, respectively). 32°C-acclimated mahi experienced increased mortality and a significant 23% decline in Ucrit, and a trend for a 26% decline in factorial aerobic scope relative to 28°C-acclimated fish. Absolute aerobic scope showed a similar pattern to factorial aerobic scope. Our results are generally in agreement with previously observed distribution patterns for wild fish. Although thermal performance can vary across life stages, the highest tested swim performance and aerobic scope found in the present study (28°C), aligns with recently observed habitat utilization patterns for wild mahi and could be relevant for climate change predictions.


Author(s):  
T.J. McArley ◽  
D. Morgenroth ◽  
L.A. Zena ◽  
A.E. Ekström ◽  
E. Sandblom

In fish, maximum O2 consumption rate (MO2max) and aerobic scope can be expanded following exhaustive exercise in hyperoxia; however, the mechanisms explaining this are yet to be identified. Here, in exhaustively exercised rainbow trout (Oncorhynchus mykiss), we assessed the influence of hyperoxia on MO2max, aerobic scope, cardiac function and blood parameters to address this knowledge gap. Relative to normoxia, MO2max was 33% higher under hyperoxia, and this drove a similar increase in aerobic scope. Cardiac output, due to increased stroke volume, was significantly elevated under hyperoxia at MO2max indicating hyperoxia released a constraint on cardiac contractility apparent with normoxia. Thus, hyperoxia improved maximal cardiac performance, thereby enhancing tissue O2 delivery and allowing a higher MO2max. Venous blood O2 partial pressure (PvO2) was elevated in hyperoxia at MO2max, suggesting a contribution of improved luminal O2 supply in enhanced cardiac contractility. Additionally, despite reduced haemoglobin and higher PvO2, hyperoxia treated fish retained a higher arterio-venous O2 content difference at MO2max. This may have been possible due to hyperoxia offsetting declines in arterial oxygenation known to occur following exhaustive exercise in normoxia. If this occurs, increased contractility at MO2max with hyperoxia may also relate to an improved O2 supply to the compact myocardium via the coronary artery. Our findings show MO2max and aerobic scope may be limited in normoxia following exhaustive exercise due to constrained maximal cardiac performance and highlight the need to further examine whether or not exhaustive exercise protocols are suitable for eliciting MO2max and estimating aerobic scope in rainbow trout.


2021 ◽  
Author(s):  
F Jutfelt ◽  
T Norin ◽  
ER Åsheim ◽  
LE Rowsey ◽  
AH Andreassen ◽  
...  
Keyword(s):  

Author(s):  
Gutierrez-Pinto Natalia ◽  
Gustavo A. Londoño ◽  
Mark A. Chappell ◽  
Jay F. Storz

Endotherms at high altitude face the combined challenges of cold and hypoxia. Cold increases thermoregulatory costs, and hypoxia may limit both thermogenesis and aerobic exercise capacity. Consequently, in comparisons between closely related highland and lowland taxa, we might expect to observe consistent differences in basal metabolism (BMR), maximal metabolism (MMR), and aerobic scope. Broad-scale comparative studies of birds reveal no association between BMR and native elevation, and altitude effects on MMR have not been investigated. We tested for altitude-related variation in aerobic metabolism in 10 Andean passerines representing five pairs of closely related species with contrasting elevational ranges. Mass-corrected BMR and MMR were significantly higher in most highland species relative to their lowland counterparts, but there was no uniform elevational trend across all pairs of species. Our results suggest that there is no simple explanation regarding the ecological and physiological causes of elevational variation in aerobic metabolism.


Export Citation Format

Share Document