Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

recursive trees
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 13 (2) ◽  
pp. 413-426
Author(s):  
S. Naderi ◽  
R. Kazemi ◽  
M. H. Behzadi

Abstract The bucket recursive tree is a natural multivariate structure. In this paper, we apply a trivariate generating function approach for studying of the depth and distance quantities in this tree model with variable bucket capacities and give a closed formula for the probability distribution, the expectation and the variance. We show as j → ∞, lim-iting distributions are Gaussian. The results are obtained by presenting partial differential equations for moment generating functions and solving them.


Author(s):  
Markus Kuba ◽  
Alois Panholzer

Abstract In this work we analyse bucket increasing tree families. We introduce two simple stochastic growth processes, generating random bucket increasing trees of size n, complementing the earlier result of Mahmoud and Smythe (1995, Theoret. Comput. Sci.144 221–249.) for bucket recursive trees. On the combinatorial side, we define multilabelled generalisations of the tree families d-ary increasing trees and generalised plane-oriented recursive trees. Additionally, we introduce a clustering process for ordinary increasing trees and relate it to bucket increasing trees. We discuss in detail the bucket size two and present a bijection between such bucket increasing tree families and certain families of graphs called increasing diamonds, providing an explanation for phenomena observed by Bodini et al. (2016, Lect. Notes Comput. Sci.9644 207–219.). Concerning structural properties of bucket increasing trees, we analyse the tree parameter $K_n$ . It counts the initial bucket size of the node containing label n in a tree of size n and is closely related to the distribution of node types. Additionally, we analyse the parameters descendants of label j and degree of the bucket containing label j, providing distributional decompositions, complementing and extending earlier results (Kuba and Panholzer (2010), Theoret. Comput. Sci.411(34–36) 3255–3273.).


Author(s):  
Shankar Bhamidi ◽  
Ruituo Fan ◽  
Nicolas Fraiman ◽  
Andrew Nobel

2021 ◽  
pp. 104776
Author(s):  
Oskar Laverny ◽  
Esterina Masiello ◽  
Véronique Maume-Deschamps ◽  
Didier Rullière

Author(s):  
Svante Janson

Abstract We explore the tree limits recently defined by Elek and Tardos. In particular, we find tree limits for many classes of random trees. We give general theorems for three classes of conditional Galton–Watson trees and simply generated trees, for split trees and generalized split trees (as defined here), and for trees defined by a continuous-time branching process. These general results include, for example, random labelled trees, ordered trees, random recursive trees, preferential attachment trees, and binary search trees.


10.37236/9486 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Gabriel Berzunza ◽  
Xing Shi Cai ◽  
Cecilia Holmgren

The \(k\)-cut number of rooted graphs was introduced by Cai et al. as a generalization of the classical cutting model by Meir and Moon. In this paper, we show that all moments of the \(k\)-cut number of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in distribution to the same limit law regardless of the offspring distribution of the trees. This extends the result of Janson. Using the same method, we also show that the \(k\)-cut number of various random or deterministic trees of logarithmic height converges in probability to a constant after rescaling, such as random split-trees, uniform random recursive trees, and scale-free random trees. 


Author(s):  
Laura Eslava

Abstract We introduce a non-increasing tree growth process $((T_n,{\sigma}_n),\, n\ge 1)$ , where T n is a rooted labelled tree on n vertices and σ n is a permutation of the vertex labels. The construction of (T n , σ n ) from (Tn−1, σn−1) involves rewiring a random (possibly empty) subset of edges in Tn−1 towards the newly added vertex; as a consequence Tn−1 ⊄ T n with positive probability. The key feature of the process is that the shape of T n has the same law as that of a random recursive tree, while the degree distribution of any given vertex is not monotone in the process. We present two applications. First, while couplings between Kingman’s coalescent and random recursive trees were known for any fixed n, this new process provides a non-standard coupling of all finite Kingman’s coalescents. Second, we use the new process and the Chen–Stein method to extend the well-understood properties of degree distribution of random recursive trees to extremal-range cases. Namely, we obtain convergence rates on the number of vertices with degree at least $c\ln n$ , c ∈ (1, 2), in trees with n vertices. Further avenues of research are discussed.


Export Citation Format

Share Document