Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

temporal networks
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 171)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Lutz Oettershagen ◽  
Petra Mutzel

AbstractThe closeness centrality of a vertex in a classical static graph is the reciprocal of the sum of the distances to all other vertices. However, networks are often dynamic and change over time. Temporal distances take these dynamics into account. In this work, we consider the harmonic temporal closeness with respect to the shortest duration distance. We introduce an efficient algorithm for computing the exact top-k temporal closeness values and the corresponding vertices. The algorithm can be generalized to the task of computing all closeness values. Furthermore, we derive heuristic modifications that perform well on real-world data sets and drastically reduce the running times. For the case that edge traversal takes an equal amount of time for all edges, we lift two approximation algorithms to the temporal domain. The algorithms approximate the transitive closure of a temporal graph (which is an essential ingredient for the top-k algorithm) and the temporal closeness for all vertices, respectively, with high probability. We experimentally evaluate all our new approaches on real-world data sets and show that they lead to drastically reduced running times while keeping high quality in many cases. Moreover, we demonstrate that the top-k temporal and static closeness vertex sets differ quite largely in the considered temporal networks.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Shilun Zhang ◽  
Xunyi Zhao ◽  
Huijuan Wang

AbstractProgress has been made in how to suppress epidemic spreading on temporal networks via blocking all contacts of targeted nodes or node pairs. In this work, we develop contact blocking strategies that remove a fraction of contacts from a temporal (time evolving) human contact network to mitigate the spread of a Susceptible-Infected-Recovered epidemic. We define the probability that a contact c(i, j, t) is removed as a function of a given centrality metric of the corresponding link l(i, j) in the aggregated network and the time t of the contact. The aggregated network captures the number of contacts between each node pair. A set of 12 link centrality metrics have been proposed and each centrality metric leads to a unique contact removal strategy. These strategies together with a baseline strategy (random removal) are evaluated in empirical contact networks via the average prevalence, the peak prevalence and the time to reach the peak prevalence. We find that the epidemic spreading can be mitigated the best when contacts between node pairs that have fewer contacts and early contacts are more likely to be removed. A strategy tends to perform better when the average number contacts removed from each node pair varies less. The aggregated pruned network resulted from the best contact removal strategy tends to have a large largest eigenvalue, a large modularity and probably a small largest connected component size.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Samir Chowdhury ◽  
Steve Huntsman ◽  
Matvey Yutin

AbstractPath homology is a powerful method for attaching algebraic invariants to digraphs. While there have been growing theoretical developments on the algebro-topological framework surrounding path homology, bona fide applications to the study of complex networks have remained stagnant. We address this gap by presenting an algorithm for path homology that combines efficient pruning and indexing techniques and using it to topologically analyze a variety of real-world complex temporal networks. A crucial step in our analysis is the complete characterization of path homologies of certain families of small digraphs that appear as subgraphs in these complex networks. These families include all digraphs, directed acyclic graphs, and undirected graphs up to certain numbers of vertices, as well as some specially constructed cases. Using information from this analysis, we identify small digraphs contributing to path homology in dimension two for three temporal networks in an aggregated representation and relate these digraphs to network behavior. We then investigate alternative temporal network representations and identify complementary subgraphs as well as behavior that is preserved across representations. We conclude that path homology provides insight into temporal network structure, and in turn, emergent structures in temporal networks provide us with new subgraphs having interesting path homology.


SoftwareX ◽  
2022 ◽  
Vol 17 ◽  
pp. 100905
Author(s):  
Roberto Posenato

2022 ◽  
Vol 91 ◽  
pp. 101728
Author(s):  
Sarah C. Gadd ◽  
Alexis Comber ◽  
Peter Tennant ◽  
Mark S. Gilthorpe ◽  
Alison J. Heppenstall

Export Citation Format

Share Document