Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

ocean carbon
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 198)

H-INDEX

62
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Chia-Te Chien ◽  
Jonathan V. Durgadoo ◽  
Dana Ehlert ◽  
Ivy Frenger ◽  
David P. Keller ◽  
...  

Abstract. The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, air-sea gas exchange of CO2 and O2, and simulations with prescribed atmospheric CO2 or CO2 emissions. A series of experiments covering the historical period (1850–2014) were performed following the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP6 (Coupled Model Intercomparison Project 6) protocols. Overall, modelled biogeochemical tracer distributions and fluxes, as well as transient evolution in surface air temperature, air-sea CO2 fluxes, and changes of ocean carbon and heat, are in good agreement with observations. Modelled inorganic and organic tracer distributions are quantitatively evaluated by statistically-derived metrics. Results of the FOCI-MOPS model, also including sea surface temperature, surface pH, oxygen (100–600 m), nitrate (0–100 m), and primary production, are within the range of other CMIP6 model results. Overall, the evaluation of FOCI-MOPS indicates its suitability for Earth climate system simulations.


2022 ◽  
Author(s):  
Yann Quilcaille ◽  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher

Abstract. While Earth system models (ESMs) are process-based and can be run at high resolutions, they are only limited by computational costs. Reduced complexity models, also called simple climate models or compact models, provide a much cheaper alternative, although at a loss of spatial information. Their structure relies on the sciences of the Earth system, but with a calibration against the most complex models. Therefore it remains important to evaluate and validate reduced complexity models. Here, we diagnose such a model the newest version of OSCAR (v3.1) using observations and results from ESMs from the current Coupled Model Intercomparison Project 6. A total of 99 experiments are selected for simulation with OSCAR v3.1 in a probabilistic framework, reaching a total of 567,700,000 simulated years. A first highlight of this exercise that the ocean carbon cycle of the model may diverge under some parametrizations and for high-warming scenarios. The diverging runs caused by this unstability were discarded in the post-processing. Then, each physical parametrization is weighted based on its performance against a set of observations, providing us with constrained results. Overall, OSCAR v3.1 shows good agreement with observations, ESMs and emerging properties. It qualitively reproduces the responses of complex ESMs, for all aspects of the Earth system. We observe some quantitative differences with these models, most of them being due to the observational constraints. Some specific features of OSCAR also contribute to these differences, such as its fully interactive atmospheric chemistry and endogenous calculations of biomass burning, wetlands CH4 and permafrost CH4 and CO2 emissions. The main points of improvements are a low sensitivity of the land carbon cycle to climate change, an unstability of the ocean carbon cycle, the seemingly too simple climate module, and the too strong climate feedback involving short-lived species. Beyond providing a key diagnosis of the OSCAR model in the context of the reduced-complexity models intercomparison project (RCMIP), this work is also meant to help with the upcoming calibration of OSCAR on CMIP6 results, and to provide a large group of CMIP6 simulations run consistently within a probabilistic framework.


2021 ◽  
Author(s):  
Le Zhang ◽  
Z. George Xue

Abstract. Coupled physical-biogeochemical models can significantly reduce uncertainties in estimating the spatial and temporal patterns of the ocean carbon system. Challenges of applying a coupled physical-biogeochemical model in the regional ocean include the reasonable prescription of carbon model boundary conditions, lack of in situ observations, and the oversimplification of certain biogeochemical processes. In this study, we applied a coupled physical-biogeochemical model (Regional Ocean Modelling System, ROMS) to the Gulf of Mexico (GoM) and achieved an unprecedented 20-year high-resolution (5 km, 1/22°) hindcast covering the period of 2000–2019. The model’s biogeochemical cycle is driven by the Coupled Model Intercomparison Project 6-Community Earth System Model 2 products (CMIP6-CESM2) and incorporates the dynamics of dissolved organic carbon (DOC) pools as well as the formation and dissolution of carbonate minerals. Model outputs include generally interested carbon system variables, such as pCO2, pH, aragonite saturation state (ΩArag), calcite saturation state (ΩCalc), CO2 air-sea flux, carbon burial rate, etc. The model’s robustness is evaluated via extensive model-data comparison against buoy, remote sensing-based Machine Learning (ML) predictions, and ship-based measurements. Model results reveal that the GoM water has been experiencing an ~ 0.0016 yr−1 decrease in surface pH over the past two decades, accompanied by a ~ 1.66 µatm yr−1 increase in sea surface pCO2. The air-sea CO2 exchange estimation confirms that the river-dominated northern GoM is a substantial carbon sink. The open water of GoM, affected mainly by the thermal effect, is a carbon source during summer and a carbon sink for the rest of the year. Sensitivity experiments are conducted to evaluate the impacts from river inputs and the global ocean via model boundaries. Our results show that the coastal ocean carbon cycle is dominated by enormous carbon inputs from the Mississippi River and nutrient-stimulated biological activities, and the carbon system condition of the open ocean is primarily driven by inputs from the Caribbean Sea via Yucatan Channel.


2021 ◽  
Author(s):  
Cara Nissen ◽  
Ralph Timmermann ◽  
Mario Hoppema ◽  
Judith Hauck

Abstract Antarctic Bottom Water formation, such as in the Weddell Sea, is an efficient vector for carbon sequestration on time scales of centuries. Possible changes in carbon sequestration under changing environmental conditions are unquantified to date, mainly due to difficulties in simulating the relevant processes on high-latitude continental shelves. Using a model setup including both ice-shelf cavities and oceanic carbon cycling, we demonstrate that by 2100, deep-ocean carbon accumulation in the southern Weddell Sea is abruptly attenuated to only 40% of the rate in the 1990s in a high-emission scenario, while still being 4-fold higher in the 2080s. Assessing deep-ocean carbon budgets and water mass transformations, we attribute this decline to an increased presence of Warm Deep Water on the southern Weddell Sea continental shelf, a 16% reduction in sea-ice formation, and a 79% increase in ice-shelf basal melt. Altogether, these changes lower the density and volume of newly formed bottom waters and reduce the associated carbon transport to the abyss.


2021 ◽  
Author(s):  
Min Zhang ◽  
Yangyan Cheng ◽  
Ying Bao ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Katherine Richardson ◽  
Jørgen Bendtsen

Primary production (PP) in the sub-polar region appears to be important for ocean carbon uptake but how the different water masses contribute to the PP occurring here has not yet been described. Using two models based on satellite observations of surface chlorophyll, light and temperature, seasonal patterns in the distribution of PP are shown here to differ in the sub-polar gyre south of the Greenland-Scotland Ridge (GSR) and surrounding water masses. Monthly averages of PP (2003–2013) were determined. Total and seasonal PP were similar in both models. Average PP in five of the domains (0.47–0.77 g C m–2 d–1) was well above the global average (0.37 g C m–2 d–1). Over the East Greenland shelf, however, total annual PP was estimated to be only 0.19 g C m–2 d–1. The Norwegian shelf was the most productive of the regions studied. “Spring blooms” appear sporadically as spikes in the annual distribution of PP in some regions/years, but do not emerge as a dominant feature in the average annual development of PP in any of the domains. For all regions, ∼25% of the annual PP takes place in the period January-May. PP peaked over most of the study area at or around maximum insolation or temperature. PP in the study region as a whole appears to be more related to latitude or water masses than to bathymetry. In waters over the East Greenland shelf, the Norwegian shelf, and north of the GSR up to 50% of annual PP had taken place when ∼50% of the annual flux of light has reached the surface. In contrast, only about 35% of annual PP had taken place in the sub-polar gyre and waters over the southern open shelf by this time. Light-use efficiency differences may be explained by differences in mixed layer depth (MLD). Multi-model Earth System model studies have indicated that climate change may decrease the MLD in the sub-polar gyre and suggest this may lead to a decrease in the PP occurring here. The results presented here, however, suggest that a shallower MLD could lead to an increase in PP.


2021 ◽  
Vol 13 (12) ◽  
pp. 5565-5589
Author(s):  
Siv K. Lauvset ◽  
Nico Lange ◽  
Toste Tanhua ◽  
Henry C. Bittig ◽  
Are Olsen ◽  
...  

Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2021 is an update of the previous version, GLODAPv2.2020 (Olsen et al., 2020). The major changes are as follows: data from 43 new cruises were added, data coverage was extended until 2020, all data with missing temperatures were removed, and a digital object identifier (DOI) was included for each cruise in the product files. In addition, a number of minor corrections to GLODAPv2.2020 data were performed. GLODAPv2.2021 includes measurements from more than 1.3 million water samples from the global oceans collected on 989 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For this annual update, adjustments for the 43 new cruises were derived by comparing those data with the data from the 946 quality controlled cruises in the GLODAPv2.2020 data product using crossover analysis. Comparisons to estimates of nutrients and ocean CO2 chemistry based on empirical algorithms provided additional context for adjustment decisions in this version. The adjustments are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent with to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/GLODAPv2_2021/, last access: 7 July 2021). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/ttgq-n825 (Lauvset et al., 2021). These bias-adjusted product files also include significant ancillary and approximated data and can be accessed via https://www.glodap.info (last access: 29 June 2021). These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2021 methods and provides a broad overview of the secondary quality control procedures and results.


Science ◽  
2021 ◽  
Vol 374 (6572) ◽  
pp. 1275-1280
Author(s):  
Matthew C. Long ◽  
Britton B. Stephens ◽  
Kathryn McKain ◽  
Colm Sweeney ◽  
Ralph F. Keeling ◽  
...  

Export Citation Format

Share Document