Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

intraspecific competition
Recently Published Documents


TOTAL DOCUMENTS

753
(FIVE YEARS 117)

H-INDEX

58
(FIVE YEARS 2)

Author(s):  
Yu. P. Dyakov

Based on the longterm observations for 1963–2019, the article provides an assessment of the yellowfin sole generation mortality dynamics depending initial abundance and population dynamics in view of abundance and biomass. Individual growth and matiration rates were evaluated in generations with different initial abundance and in different states of population dynamics. Results indicated about intraspecific competition in yellowfin sole in the eastern part of the Sea of Okhotsk, expressed in specifics of the dynamics of stock abundance, growth and maturation. Forming generation stock abundance in early and later ages has different character. The more exceeding number of parental eggs spawned, the more generation abundance of yearlings getting exactly compensated by mortality (complete compensation). Older generations demonstrate the phenomen of “overcompensation”, when mortality of generations appeared in the years of higher egg production exceeds fertility. In the period of population growth and stabilization at a high level the period of the Yellowfin sole abundance fluctuation cycle gets shorter and the amplitude – smaller. Effects of intraspecific competition on the growth of individuals are revealed. Negative effects of the competition authentically revealed in elder age groups were not observed in younger age groups. An increase of the Yellowfin sole abundance brings negative effects on maturation rate of males with almost no such effects on females. To the greatest extent such effects can be seen in young age groups, at the beginning and middle stage of maturation.


2022 ◽  
Author(s):  
Juliano Morimoto ◽  
Davina Derous ◽  
Marius Wenzel ◽  
Youn Henry ◽  
Herve Colinet

Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways and physiological trade-offs underpinning these ecological processes are poorly characterised. We reared Drosophila melanogaster at three egg densities (5, 60 and 300 eggs/ml) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs) including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, Taurine, Toll/Imd signalling and P450 xenobiotics metabolism pathways. Overall, our findings show that larval overcrowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Yang Gao ◽  
Yueping Liang ◽  
Yuanyuan Fu ◽  
Zhuanyun Si ◽  
Abdoul Kader Mounkaila Hamani

Plant physiological responses to various stresses are characterized by interaction and coupling, while the intrinsic mechanism remains unclear. The effects of intraspecific competition on plant growth, stomatal opening, and hormone concentrations were investigated with three tomato genotypes (WT-wild type, Ailsa Craig; FL-a abscisic acid (ABA) deficient mutant, flacca; NR-a partially ethylene-insensitive genotype) under two water regimes (full irrigation, irrigation amount = daily transpiration; deficit irrigation, 60% of irrigation amount in full irrigation) in this study. Three kinds of competitions were designed, i.e., root and canopy competition, non-root competition, and non-canopy competition, respectively. Intraspecific competition reduced plant leaf area and stomatal conductance (gs) of wild-type tomato, accompanied by ABA accumulation and ethylene evolution. Intraspecific competition-induced decrease in gs was absent in FL and NR, indicating ABA and ethylene involved in plant response to intraspecific competition. As soil water becomes dry, the competition decreased gs by elevating ABA and ethylene accumulations. Under severe drought, the competition-induced decline in gs was covered by the severe drought-induced decrease in gs, as hydraulic signals most probably dominate. The absence of canopy competition insignificantly influenced plant stomatal opening of well-watered tomato, as canopy separation minimized the plant neighbor sensing by ethylene and other signals. Whereas under water deficit condition, the absence of canopy competition significantly reduced ABA accumulation in roots and then stomatal conductance, indicating the belowground neighbor detection signals maybe enhanced by soil drought. The absence of root competition increased ethylene evolution, confirming the importance of ethylene in neighbor detection and plant response to environmental stress.


2021 ◽  
Author(s):  
Tiina Savolainen ◽  
Minna-Maarit Kytöviita

Abstract Purpose The ecological importance of arbuscular mycorrhizal fungi (AMF) in plant acquisition of inorganic and organic sources of nitrogen (N) is not clear. To improve understanding of the plant N nutrition ecology, we tested the effect of intraspecific competition and AMF in plant N source use in growth and N acquisition. Methods Solidago virgaurea was grown in microcosms in a fully factorial experiment under greenhouse conditions. The factors tested were intraspecific competition between seedlings and adult plants (yes, no), N source (NH4, glycine) and AMF (inoculated with Glomus hoi, not inoculated). Results When grown separately, non-mycorrhizal seedling growth was highest when grown with ammonium, but non-mycorrhizal adults grew best with glycine as the sole N source. Mycorrhizal symbiosis with Glomus hoi evened out this initial niche partitioning in terms of differences in N source use and all mycorrhizal plants grew best with ammonium. Competition shaped plant benefit from mycorrhizal symbiosis depending on the N source. Competition reduced mycorrhizal growth benefit in glycine-grown seedlings, but not in adults. Plant performance did not show uniform relationship with δ15N, but δ15N was affected by life stage, competition and mycorrhiza. Conclusions Plant competition and AMF shape plant N source use. Plant and AMF benefit of the symbiosis depend on the N source.


2021 ◽  
Vol 1 ◽  
Author(s):  
Bastien Castagneyrol ◽  
Inge van Halder ◽  
Yasmine Kadiri ◽  
Laura Schillé ◽  
Hervé Jactel

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1704
Author(s):  
Bangli Wu ◽  
Yun Guo ◽  
Minhong He ◽  
Xu Han ◽  
Lipeng Zang ◽  
...  

Plant competition affects belowground ecological processes, such as litter decomposition and nutrient release. Arbuscular mycorrhizal (AM) fungi play an essential role in plant growth and litter decomposition potentially. However, how plant competition affects the nutrient release of litter through AM fungi remains unclear especially for juvenile plants. In this study, a competitive potting experiment was conducted using juvenile seedlings of Broussonetia papyrifera and Carpinus pubescens from a karst habitat, including the intraspecific and interspecific competition treatments. The seedlings were inoculated by AM fungus or not inoculated, and the litter mixtures of B. papyrifera and C. pubescens were added into the soil or not added. The results were as follows: Litter addition significantly increased the root mycorrhizal colonization of two species in intraspecific competition. AM fungus significantly increased the biomass of B. papyrifera seedings and nitrogen release and decreased nitrogen concentration and N/P ratio of litter and further improved the total nitrogen and N/P ratio of soil under litter. The interspecific competition interacting with AM fungus was beneficial to the biomass accumulation of B. papyrifera and improvement of soil nutrients under litter. However, intraspecific competition significantly promoted nutrient releases via AM fungus. In conclusion, we suggest that AM fungi endow greater plant biomass and soil nutrients through interspecific competition, while intraspecific competition prefers to release the nutrients of litter.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3333
Author(s):  
Tomás Fernández ◽  
Alex Lancaster ◽  
Claudio A. Moraga ◽  
Sergio Radic-Schilling ◽  
Achaz von Hardenberg ◽  
...  

In extensive livestock production, high densities may inhibit regulation processes, maintaining high levels of intraspecific competition over time. During competition, individuals typically modify their behaviours, particularly feeding and bite rates, which can therefore be used as indicators of competition. Over eight consecutive seasons, we investigated if variation in herd density, food availability, and the presence of a potential competitor, the guanaco (Lama guanicoe), was related with behavioural changes in domestic sheep in Chilean Patagonia. Focal sampling, instantaneous scan sampling, measures of bite and movement rates were used to quantify behavioural changes in domestic sheep. We found that food availability increased time spent feeding, while herd density was associated with an increase in vigilant behaviour and a decrease in bite rate, but only when food availability was low. Guanaco presence appeared to have no impact on sheep behaviour. Our results suggest that the observed behavioural changes in domestic sheep are more likely due to intraspecific competition rather than interspecific competition. Consideration of intraspecific competition where guanaco and sheep co-graze on pastures could allow management strategies to focus on herd density, according to rangeland carrying capacity.


Export Citation Format

Share Document