Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

intermolecular hydrogen bonds
Recently Published Documents


TOTAL DOCUMENTS

565
(FIVE YEARS 98)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Adrienne Ndiolene ◽  
Tidiane Diop ◽  
Ndiak Ndiaye ◽  
Mouhamadou Sembene Boye ◽  
François Michaud ◽  
...  

Abstract Two novel zinc(II) complexes containing 4-methoxybenzylidene moieties namely, Zn(L)Cl2 (L = N, N′-bis(4-methoxybenzylidene)ethane-1, 2-diamine (1) or N-(4-methoxybenzylidene)-ethane-1, 2-diamine (2)) have been synthesized and characterized by infrared spectroscopy and single-crystal X-ray diffraction. Complex 1 crystallizes in the monoclinic space group P21/c with a = 9.2315(4); b = 12.0449(4); c = 18.2164(7) Å; β = 98.472(4)°, V = 1278.9(4) Å3 and Z = 4. Complex 2 crystallizes in the monoclinic space group P21/n with a = 6.5733 (2), b = 13.6595(5), c = 15.1615(5) Å; β = 101.846(4)°, V = 1332.33(8) Å3 and Z = 4. The environment of each Zn(II) atom is distorted tetrahedral with coordination of two terminal Cl atoms and two N atoms of the N,N′ – bis(4-methoxybenzylidene)ethane-1,2-diamine (1) or N-(4-methoxybenzylidene)ethane-1,2-diamine (2) ligand. The stability of the crystalline structure is ensured by the existence of intra- and intermolecular hydrogen bonds of the type C–H…Cl (1) and N–H…Cl (2) leading to supramolecular topologies.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 465
Author(s):  
Pálma Bucur ◽  
Ibolya Fülöp ◽  
Emese Sipos

Around 5% of the population of the world is affected with the disease called diabetes mellitus. The main medication of the diabetes is the insulin; the active form is the insulin monomer, which is an instable molecule, because the long storage time, or the high temperature, can cause the monomer insulin to adapt an alternative fold, rich in β-sheets, which is pharmaceutically inactive. The aim of this study is to form different insulin complexes with all the cyclodextrin used for pharmaceutical excipients (native cyclodextrin, methyl, hydroxyethyl, hydroxypropyl and sulfobutylether substituted β-cyclodextrin), in silico condition, with the AutoDock molecular modeling program, to determine the best type of cyclodextrin or cyclodextrin derivate to form a complex with an insulin monomer, to predict the molar ratio, the conformation of the complex, and the intermolecular hydrogen bonds formed between the cyclodextrin and the insulin. From the results calculated by the AutoDock program it can be predicted that insulin can make a stable complex with 5–7 molecules of hydroxypropyl-β-cyclodextrin or sulfobutylether-β-cyclodextrin, and by forming a complex potentially can prevent or delay the amyloid fibrillation of the insulin and increase the stability of the molecule.


2022 ◽  
Vol 141 (1) ◽  
Author(s):  
Senqi Guo ◽  
Chun Zhu ◽  
Guoqing Chen ◽  
Jiao Gu ◽  
Chaoqun Ma ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 454-458
Author(s):  
Sehriman Atalay ◽  
Mustafa Macit ◽  
Hakan Bulbul

The Schiff base compound, N-((2-ethoxynaphthalen-1-yl)methylene)-4-fluoroaniline, has been synthesized and characterized by X-ray diffraction method. The title compound, C19H16FNO, crystallizes in triclinic, space group P-1 (no. 2), a = 10.6343(9) Å, b = 11.4720(10) Å, c = 13.8297(13) Å, α = 102.466(7)°, β = 104.763(7)°, γ = 98.972(7)°, V = 1552.7(2) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.086 mm-1, Dcalc = 1.255 g/cm3, 24355 reflections measured (3.16° ≤ 2Θ ≤ 51°), 5779 unique (Rint = 0.0794, Rsigma = 0.0696) which were used in all calculations. The final R1 was 0.0373 (I > 2σ(I)) and wR2 was 0.0763 (all data). The title compound contains two molecules with a similar structure in the asymmetric unit cell. The packing of the crystal structure is determined by weak C–H···F and C-H···N intermolecular hydrogen bonds. The contributions of these weak interactions in the crystal structure were calculated by the Hirshfeld surfaces and examined by the intermolecular interactions within the structure. The existence, nature and percentage contribution of different intermolecular interactions H···H, C···H, N···H, and F···H were determined using Hirshfeld surface analysis and fingerprint plots.


2021 ◽  
pp. 30-33

The aim of this work is develop an approach that makes it possible to study the spectral properties and structure of intermolecular hydrogen bonds in aqueous solutions of ethanol formed in systems whose existence in a gaseous medium or an isolated state is practically impossible. This approach bases on the combined use of infrared spectroscopy and molecular dynamics (MD) methods. An analysis give the structural reorganization of water molecules depending on the concentration of ethanol alcohol. It has been shown that the method of molecular dynamics with classical force fields makes it possible to explicitly take into account the molecules of the solvent and solute, and, thus, to investigate hydrogen bonds in the system and to interpret with the experimental data obtained by vibrational spectroscopy.


2021 ◽  
Vol 8 (4) ◽  
pp. 20218413
Author(s):  
L. A. Yakovishin ◽  
E. V. Tkachenko

Chitosan and poly(methyl methacrylate) (PMMA) composites were synthesized by polymerization with heating and mechanochemical method. The obtained polymer composites were analyzed by the ATR FT-IR spectroscopy method. The presence of intermolecular hydrogen bonds and hydrophobic interactions in formation of PMMA and chitosan polymer composites was shown.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 260
Author(s):  
Qi Fang ◽  
Nao Ma ◽  
Keying Ding ◽  
Shengnan Zhan ◽  
Qiaoming Lou ◽  
...  

The effect that ratios of fish gelatin (FG) to α/β/γ cyclodextrins (α, β, γCDs) had on the phase behavior of a concentrated biopolymer mixture were comparatively investigated. This showed that the formed biopolymer mixture had the highest gel strength at ratios of FG–CD = 90:10. FG could interact with CDs to form stable soluble complexes with lower values of turbidity, particle size and ζ-potential. All of the FG–CD mixture solutions exhibited pseudo-plastic behaviors, and FG–αCD samples had the highest viscosity values than others. The addition of CDs could unfold FG molecules and make conformation transitions of FG from a random coil to β-turn, leading to the environmental change of hydrophobic residues and presenting higher fluorescence intensity, especially for βCDs. FTIR results revealed that the formation of intermolecular hydrogen bonds between FG and CD could change the secondary structure of FG. These findings might help further apply FG–CD complexes in designing new food matrixes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anton Sinko ◽  
Peter Solyankin ◽  
Aleksey Kargovsky ◽  
Vera Manomenova ◽  
Elena Rudneva ◽  
...  

AbstractIn this paper we describe the properties of the crystal of guanylurea hydrogen phosphate (NH$$_2$$ 2 )$$_2$$ 2 CNHCO(NH$$_2$$ 2 )H$$_2$$ 2 PO$$_3$$ 3 (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has a wide window of transparency and a high optical threshold in the visible and NIR spectral regions and narrow absorption bands in the terahertz frequency range. The spectral characteristics of absorption and refraction in the THz range were found to be strongly dependent on crystal temperature and orientation. Computer simulations made it possible to link the nature of the resonant response of the medium at THz frequencies with the molecular structure of the crystal, in particular, with intermolecular hydrogen bonds and the layered structure of the lattice. The possibility of application of the crystal under study for the conversion of femtosecond laser radiation from visible an NIR to terahertz range was demonstrated. It was shown that dispersion properties of the crystal allow the generation of narrow band terahertz radiation, whose spectral properties are determined by conditions close to phase matching. The properties of the generated terahertz radiation under various temperatures suggest the possibility of phonon mechanism of enhancement for nonlinear susceptibility of the second order.


Author(s):  
Agnieszka Czapik ◽  
Marcin Kwit

The structure of N-triphenylacetyl-L-tyrosine (C29H25NO4, L-TrCOTyr) is characterized by the presence of both donors and acceptors of classical hydrogen bonds. At the same time, the molecule contains a sterically demanding and hydrophobic trityl group capable of participating in π-electron interactions. Due to its large volume, the trityl group may favour the formation of structural voids in the crystals, which can be filled with guest molecules. In this article, we present the crystal structures of a series of N-triphenylacetyl-L-tyrosine solvates with chloroform, namely, L-TrCOTyr·CHCl3 (I) and L-TrCOTyr·1.5CHCl3 (III), and dichloromethane, namely, L-TrCOTyr·CH2Cl2 (II) and L-TrCOTyr·0.1CH2Cl2 (IV). To complement the topic, we also decided to use the racemic amide N-triphenylacetyl-DL-tyrosine (rac-TrCOTyr) and recrystallized it from a mixture of chloroform and dichloromethane. As a result, rac-TrCOTyr·1.5CHCl3 (V) was obtained. In the crystal structures, the amide molecules interact with each other via O—H...O hydrogen bonds. Noticeably, the amide N—H group does not participate in the formation of intermolecular hydrogen bonds. Channels are formed between the TrCOTyr molecules and these are filled with solvent molecules. Additionally, in the crystals of III and V, there are structural voids that are occupied by chloroform molecules. Structure analysis has shown that solvates I and II are isostructural. Upon loss of solvent, the solvates transform into the solvent-free form of TrCOTyr, as confirmed by thermogravimetric analysis, differential scanning calorimetry and powder X-ray diffraction.


Export Citation Format

Share Document