Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

human mabs
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 24)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
William D. Tolbert ◽  
Dung N. Nguyen ◽  
Marina Tuyishime ◽  
Andrew R. Crowley ◽  
Yaozong Chen ◽  
...  

Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Lisanne de Vor ◽  
Bruce van Dijk ◽  
Kok van Kessel ◽  
Jeffrey S Kavanaugh ◽  
Carla de Haas ◽  
...  

Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010183
Author(s):  
Catarina E. Hioe ◽  
Guangming Li ◽  
Xiaomei Liu ◽  
Ourania Tsahouridis ◽  
Xiuting He ◽  
...  

Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010133
Author(s):  
Lawrence T. Wang ◽  
Lais S. Pereira ◽  
Patience K. Kiyuka ◽  
Arne Schön ◽  
Neville K. Kisalu ◽  
...  

Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human “repeat” mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.


2021 ◽  
Author(s):  
Maya Imbrechts ◽  
Wim Maes ◽  
Louanne Ampofo ◽  
Nathalie Van den Berghe ◽  
Bas Calcoen ◽  
...  

Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants can escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent COVID-19 patient, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 Wuhan, alpha, beta, gamma and delta infection in vitro. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 ug/ml, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010042
Author(s):  
Yevel Flores-Garcia ◽  
Lawrence T. Wang ◽  
Minah Park ◽  
Beejan Asady ◽  
Azza H. Idris ◽  
...  

Rare and potent monoclonal antibodies (mAbs) against the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) on infective sporozoites (SPZ) preferentially bind the PfCSP junctional tetrapeptide NPDP or NVDP minor repeats while cross-reacting with NANP major repeats in vitro. The extent to which each of these epitopes is required for protection in vivo is unknown. Here, we assessed whether junction-, minor repeat- and major repeat-preferring human mAbs (CIS43, L9 and 317 respectively) bound and protected against in vivo challenge with transgenic P. berghei (Pb) SPZ expressing either PfCSP with the junction and minor repeats knocked out (KO), or PbCSP with the junction and minor repeats knocked in (KI). In vivo protection studies showed that the junction and minor repeats are necessary and sufficient for CIS43 and L9 to neutralize KO and KI SPZ, respectively. In contrast, 317 required major repeats for in vivo protection. These data establish that human mAbs can prevent malaria infection by targeting three different protective epitopes (NPDP, NVDP, NANP) in the PfCSP repeat region. This report will inform vaccine development and the use of mAbs to passively prevent malaria.


2021 ◽  
Author(s):  
Ronald R. Cobb ◽  
Joseph Nkolola ◽  
Pavlo Gilchuk ◽  
Abishek Chandrashekar ◽  
Robert V. House ◽  
...  

Human monoclonal antibody (mAb) treatments are promising for COVID-19 prevention, post-exposure prophylaxis, or therapy. However, the titer of neutralizing antibodies required for protection against SARS-CoV-2 infection remains poorly characterized. We previously described two potently neutralizing mAbs COV2-2130 and COV2-2381 targeting non-overlapping epitopes on the receptor-binding domain of SARS-CoV-2 spike protein. Here, we engineered the Fc-region of these mAbs with mutations to extend their persistence in humans and reduce interactions with Fc gamma receptors. Passive transfer of individual or combinations of the two antibodies (designated ADM03820) given prophylactically by intravenous or intramuscular route conferred virological protection in a non-human primate (NHP) model of SARS-CoV-2 infection, and ADM03820 potently neutralized SARS-CoV-2 variants of concern in vitro. We defined 6,000 as a protective serum neutralizing antibody titer in NHPs against infection for passively transferred human mAbs that acted by direct viral neutralization, which corresponded to a concentration of 20 microgram/mL of circulating mAb.


2021 ◽  
Vol 118 (37) ◽  
pp. e2100104118
Author(s):  
Ryan J. Malonis ◽  
James T. Earnest ◽  
Arthur S. Kim ◽  
Matthew Angeliadis ◽  
Frederick W. Holtsberg ◽  
...  

Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline–revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256779
Author(s):  
Pan Kyeom Kim ◽  
Jung Sun Ahn ◽  
Cheol Min Kim ◽  
Ji Min Seo ◽  
Sun Ju Keum ◽  
...  

Post-exposure prophylaxis (PEP) is highly effective in preventing disease progression of rabies when used in timely and appropriate manner. The key treatment for PEP is infiltration of rabies immune globulin (RIG) into lesion site after bite exposure, besides wound care and vaccination. Unfortunately, however, RIG is expensive and its supply is limited. Currently, several anti-rabies virus monoclonal antibody (mAb) products are under development as alternatives to RIG, and two recently received regulatory approval in India. In this study, fully human mAbs that recognize different rabies virus glycoprotein conformational antigenic site (II and III) were created from peripheral blood mononuclear cells of heathy vaccinated subjects. These mAbs neutralized a diverse range of lyssavirus types. As at least two anti-rabies virus mAbs are recommended for use in human PEP to ensure broad coverage against diverse lyssaviruses and to minimize possible escape variants, two most potent mAbs, NP-19-9 and 11B6, were selected to be used as cocktail treatment. These two mAbs were broadly reactive to different types of lyssaviruses isolates, and were shown to have no interference with each other. These results suggest that NP-19-9 and 11B6 are potent candidates to be used for PEP, suggesting further studies involving clinical studies in human.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 924
Author(s):  
Claudia Gandolfo ◽  
Shibily Prathyumn ◽  
Chiara Terrosi ◽  
Gabriele Anichini ◽  
Gianni Gori Savellini ◽  
...  

Emerging and re-emerging viral infections have been an important public health problem in recent years. We focused our attention on Toscana virus (TOSV), an emergent neurotropic negative-strand RNA virus of the Phenuiviridae family. The mechanisms of protection against phlebovirus natural infection are not known; however, it is supposed that a virus-neutralizing antibody response against viral glycoproteins would be useful to block the first stages of infection. By using an improved memory B cell immortalization method, we obtained a panel of human mAbs which reacted with TOSV antigens. We identified three epitopes of TOSV Gn glycoproteins by neutralizing mAbs using synthetic peptide arrays on membrane support (SPOT synthesis). These epitopes, separated in primary structure, might be exposed near one another as a conformational epitope in their native structure. In vivo studies were conducted to evaluate the humoral response elicited in mice immunized with the identified peptides. The results underlined the hypothesis that the first two peptides located in the NH2 terminus could form a conformational epitope, while the third, located near the transmembrane sequence in the carboxyl terminus, was necessary to strengthen neutralizing activity. Our results emphasize the importance of identifying neutralizing epitopes shared among the various phleboviruses, which could be exploited for the development of a potential epitope-based diagnostic assay or a polyvalent protective vaccine against different phleboviruses.


Export Citation Format

Share Document