Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

movement variability
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 72)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Katrin Sutter ◽  
Leonie Oostwoud Wijdenes ◽  
Robert J. van Beers ◽  
W. Pieter Medendorp

Professional golf players spend years practicing, but will still perform one or two practice swings without a ball before executing the actual swing. Why do they do this? In this study we tested the hypothesis that repeating a well-practiced movement leads to a reduction of movement variability. To operationalize this hypothesis, participants were tested in a center-out reaching task with four different targets, on four different days. To probe the effect of repetition they performed random sequences from one to six movements to the same target. Our findings show that, with repetition, movements are not only initiated earlier but their variability is reduced across the entire movement trajectory. Furthermore, this effect is present within and across the four sessions. Together, our results suggest that movement repetition changes the tradeoff between movement initiation and movement precision.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260715
Author(s):  
Michael Bergin ◽  
Kylie Tucker ◽  
Bill Vicenzino ◽  
Paul W. Hodges

Movement adapts during acute pain. This is assumed to reduce nociceptive input, but the interpretation may not be straightforward. We investigated whether movement adaptation during pain reflects a purposeful search for a less painful solution. Three groups of participants performed two blocks (Baseline, Experimental) of wrist movements in the radial-ulnar direction. For the Control group (n = 10) both blocks were painfree. In two groups, painful electrical stimulation was applied at the elbow in Experimental conditions when the wrist crossed radial-ulnar neutral. Different stimulus intensities were given for specific wrist angles in a secondary direction (flexion-extension) as the wrist passed radial-ulnar neutral (Pain 5–1 group:painful stimulation at ~5 or ~1/10—n = 21; Pain 5–0 group:~5 or 0(no stimulation)/10—n = 6)). Participants were not informed about the less painful alternative and could use any strategy. We recorded the percentage of movements using the wrist flexion/extension alignment that evoked the lower intensity noxious stimulus, movement variability, and change in wrist/forearm alignment during pain. Participants adapted their strategy of wrist movement during pain provocation and reported less pain over time. Three adaptations of wrist movement were observed; (i) greater use of the wrist alignment with no/less noxious input (Pain 5–1, n = 8/21; Pain 5–0, n = 2/6); (ii) small (n = 9/21; n = 3/6) or (iii) large (n = 4/21; n = 1/6) change of wrist/forearm alignment to a region that was not allocated to provide an actual reduction in noxious stimulus. Pain reduction was achieved with “taking action” to relieve pain and did not depend on reduced noxious stimulus.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Wang ◽  
Wing-Kai Lam ◽  
Lok-Yee Pak ◽  
Charis K.-W. Wong ◽  
Mohammad F. Tan ◽  
...  

While colour of red can play a significant role in altering human perception and performances, little is known about its perceptual-motor effect on running mechanics. This study examined the effects of variations in insole colours on impact forces, ankle kinematics, and trial-to-trial reliability at various running speeds. Sixteen male recreational runners ran on instrumented treadmill at slow (90%), preferred (100%), and fast (110%) running speeds when wearing insoles in red, blue, and white colours. We used synchronized force platform and motion capturing system to measure ground reaction force, ankle sagittal and frontal kinematics, and movement variability. A two-way (colour x speed) ANOVA with repeated measures was performed with Bonferroni adjusted post hoc comparisons, with alpha set at 0.05. Data analyses indicated that participants demonstrated higher impact and maximum loading rate of ground reaction force, longer stride length, shorter contact time, and smaller touchdown ankle inversion as well as larger ankle sagittal range of motion (RoM), but smaller frontal RoM in fast speed as compared with preferred P < 0.05 and slow speeds P < 0.001 . Although insole colour had minimal effect on mean values of any tested variables P > 0.05 , participants wearing red-coloured orthoses showed higher coefficient of variation values for maximum loading rate than wearing blue insoles P = 0.009 . These results suggest that running at faster speed would lead to higher impact loading and altered lower-limb mechanics and that colour used on the tops of insoles influences the wearers’ movement repeatability, with implications for use of foot insole in running.


Author(s):  
Fabian C Klingner ◽  
Barbara CH Huijgen ◽  
Ruud JR Den Hartigh ◽  
Matthias Kempe

Skill assessments are essential to elite soccer coaches and clubs, to provide an evidence-based approach to player evaluation. Valid methods thereby support talent identification and development procedures (e.g. scouting and training strategies). However, it remains a complex challenge. Small-sided games have emerged as a promising tool, due to high ecological validity. Until now, no review has focused on their discriminative power. Therefore, we aimed to investigate whether technical–tactical skill assessments of small-sided games can discriminate between individual players and between teams of different skill levels (i.e. higher vs. lower playing levels and older vs. younger players) in soccer. A scoping review of PubMed, Web of Science, and MEDLINE databases was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. A total of 23 studies were included, all but one of which showed at least good methodological quality (i.e. > 50% score in quality assessment). For technical skills, small-sided games indicate discriminative power for passing skills, but only when comparing players of different playing levels, as supported by two of the included studies. Tactical categories, such as movement variability and decision-making, were more pronounced in higher level and more experienced players. However, the most conclusive finding among individual skill assessments was that the technical–tactical overall performance (a total score comprised of different subcategories) of individual players showed a positive relation to skill level in three studies. Team performance assessments in small-sided games showed that older and higher level teams mainly distinguish themselves from less-skilled peers by using the available space more efficiently. With the influence of different assessment instruments and several small-sided games modifications in mind, it may be concluded that technical–tactical skills in small-sided games can discriminate between players and teams of different skill levels. An interesting future avenue is to examine a more consistent approach to skill assessments in small-sided games, which can warrant their use for scouting and talent identification purposes.


2021 ◽  
Author(s):  
Paul VanGilder ◽  
Kris Phataraphruk ◽  
Christopher A Buneo

2021 ◽  
Author(s):  
Marlene Meyer ◽  
Johanna E van Schaik ◽  
Francesco Poli ◽  
Sabine Hunnius

When teaching infants new actions, parents tend to modify their movements. Infants prefer these infant-directed actions (IDAs) over adult-directed actions and learn well from them. Yet, it remains unclear how parents’ action modulations capture infants’ attention. Typically, making movements larger than usual is thought to draw attention. Recent findings, however, suggest that parents might exploit movement variability to highlight actions. We hypothesized that variability in movement amplitude rather than higher amplitude is capturing infants’ attention during IDAs. Using EEG, we measured 15-month-olds’ brain activity while they were observing action demonstrations with normal, high, or variable amplitude movements. Infants’ theta power (4-5Hz) in fronto-central channels was compared between conditions. Frontal theta was significantly higher, indicating stronger attentional engagement, in the variable compared to the other conditions. Computational modelling showed that infants’ frontal theta power was predicted best by how surprising each movement was. Thus, surprise induced by variability in movements rather than large movements alone engages infants’ attention during IDAs. Infants with higher theta power for variable movements were more likely to perform actions successfully and to explore objects novel in the context of the given goal. This highlights the brain mechanisms by which IDAs enhance infants’ attention, learning, and exploration.


Biomimetics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 63
Author(s):  
Kunkun Zhao ◽  
Zhisheng Zhang ◽  
Haiying Wen ◽  
Alessandro Scano

Quantifying movement variability is a crucial aspect for clinical and laboratory investigations in several contexts. However, very few studies have assessed, in detail, the intra-subject variability across movements and the inter-subject variability. Muscle synergies are a valuable method that can be used to assess such variability. In this study, we assess, in detail, intra-subject and inter-subject variability in a scenario based on a comprehensive dataset, including multiple repetitions of multi-directional reaching movements. The results show that muscle synergies are a valuable tool for quantifying variability at the muscle level and reveal that intra-subject variability is lower than inter-subject variability in synergy modules and related temporal coefficients, and both intra-subject and inter-subject similarity are higher than random synergy matching, confirming shared underlying control structures. The study deepens the available knowledge on muscle synergy-based motor function assessment and rehabilitation applications, discussing their applicability to real scenarios.


Author(s):  
Brittany Heintz Walters ◽  
Wendy E. Huddleston ◽  
Kristian O'Connor ◽  
Jinsung Wang ◽  
Marie Hoeger Bement ◽  
...  

Well-documented manual dexterity impairments in older adults may critically depend on the processing of visual information. The purpose of this study was to determine age-related changes in eye and hand movements during commonly used pegboard tests and the association with manual dexterity impairments in older adults. The relationship between attentional deficits and manual dexterity was also assessed. Eye movements and hand kinematics of 20 young (20-38 years) and 20 older (65-85 years) adults were recorded during 9-Hole Pegboard, Grooved Pegboard and a visuospatial dual test. Results were compared to standardized tests of attention (The Test of Everyday Attention and Trail Making Test) that assess visual selective attention, sustained attention, attentional switching and divided attention. Hand movement variability was 34% greater in older vs. young adults when placing the pegs into the pegboard and this was associated with decreased pegboard performance, providing further evidence that increased movement variability plays a role in dexterity impairments in older adults. Older adults made more corrective saccades and spent less time gazing at the pegboard than young adults, suggesting altered visual strategies in older compared to young adults. The relationship between pegboard completion time and Trail Making Test B demonstrates an association between attentional deficits and age-related pegboard impairments. Results contribute novel findings of age-associated changes in eye movements during a commonly used manual dexterity task and offer insight into potential mechanisms underlying hand motor impairments in older adults.


2021 ◽  
Author(s):  
Ding-lan Tang ◽  
Ben Parrell ◽  
Caroline Niziolek

Although movement variability is often attributed to unwanted noise in the motor system, recent work has demonstrated that variability may be actively controlled. To date, research on regulation of motor variability has relied on relatively simple, laboratory-specific reaching tasks. It is not clear how these results translate to complex, well-practiced and real-world tasks. Here, we test how variability is regulated during speech production, a complex, highly over-practiced and natural motor behavior that relies on auditory and somatosensory feedback. Specifically, in a series of four experiments, we assessed the effects of auditory feedback manipulations that modulate perceived speech variability, shifting every production either towards (inward-pushing) or away from (outward-pushing) the center of the distribution for each vowel. Participants exposed to the inward-pushing perturbation (Experiment 1) increased produced variability while the perturbation was applied as well as after it was removed. Unexpectedly, the outward-pushing perturbation (Experiment 2) also increased produced variability during exposure, but variability returned to near baseline levels when the perturbation was removed. Outward-pushing perturbations failed to reduce participants' produced variability both with larger perturbation magnitude (Experiment 3) or after their variability had increased above baseline levels as a result of the inward-pushing perturbation (Experiment 4). Simulations of the applied perturbations using a state space model of motor behavior suggest that the increases in produced variability in response to the two types of perturbations may arise through distinct mechanisms: an increase in controlled variability in response to the inward-pushing perturbation, and an increase in sensitivity to auditory errors in response to the outward-pushing perturbation. Together, these results suggest that motor variability is actively regulated even in complex and well-practiced behaviors, such as speech.


Export Citation Format

Share Document