Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

molecular architecture
Recently Published Documents


TOTAL DOCUMENTS

1823
(FIVE YEARS 263)

H-INDEX

118
(FIVE YEARS 6)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Dina Nadyrshina ◽  
Aliya Zaripova ◽  
Anton Tyurin ◽  
Ildar Minniakhmetov ◽  
Ekaterina Zakharova ◽  
...  

Osteogenesis imperfecta (OI) is an inherited disease of bone characterized by increased bone fragility. Here, we report the results of the molecular architecture of osteogenesis imperfecta research in patients from Bashkortostan Republic, Russia. In total, 16 mutations in COL1A1, 11 mutations in COL1A2, and 1 mutation in P3H1 and IFIMT5 genes were found in isolated states; 11 of them were not previously reported in literature. We found mutations in CLCN7, ALOX12B, PLEKHM1, ERCC4, ARSB, PTH1R, and TGFB1 that were not associated with OI pathogenesis in patients with increased bone fragility. Additionally, we found combined mutations (c.2869C>T, p. Gln957* in COL1A1 and c.1197+5G>A in COL1A2; c.579delT, p. Gly194fs in COL1A1 and c.1197+5G>A in COL1A2; c.2971G>C, p. Gly991Arg in COL1A2 and с.212G>C, p.Ser71Thr in FGF23; c.-14C>T in IFITM5 and c.1903C>T, p. Arg635* in LAMB3) in 4 patients with typical OI clinic phenotypes.


Author(s):  
Guo-Hua HU ◽  
Wei-Yun JI ◽  
Tian-Tian LI ◽  
Si-Bo Cheng ◽  
Lian-Fang FENG ◽  
...  

Reactive polymer blending is basically a flow/mixing-driven process of interfacial generation, interfacial reaction for copolymer formation and morphology development. This work shows two antagonistic effects of mixing on this process: while mixing promotes copolymer formation by creating interfaces and enhancing collisions between reactive groups at the interfaces, excessive mixing may pull the in-situ formed copolymer out of the interfaces to one of the two polymer components of the blend, especially when the copolymer becomes highly asymmetrical. As such, the copolymer may loss its compatibilization efficiency. The mixing-driven copolymer pull-out from the interfaces is a catastrophic process (less than a minute), despite the high viscosity of the polymer blend. It depends on the molecular architecture of the reactive compatibilizer, polymer blend composition, mixing intensity and annealing. These findings are obtained using the concept of reactive tracer-compatibilizer and a model reactive polymer blend.


2022 ◽  
Author(s):  
Wusha Miao ◽  
Bo Yang ◽  
Binjie Jin ◽  
Chujun Ni ◽  
Haijun Feng ◽  
...  

Author(s):  
J. Ford ◽  
D. Kafetsouli ◽  
H. Wilson ◽  
C. Udeh-Momoh ◽  
M. Politis ◽  
...  

Neuroimaging serves a variety of purposes in Alzheimer’s disease (AD) and related dementias (ADRD) research - from measuring microscale neural activity at the subcellular level, to broad topological patterns seen across macroscale-brain networks, and everything in between. In vivo imaging provides insight into the brain’s structure, function, and molecular architecture across numerous scales of resolution; allowing examination of the morphological, functional, and pathological changes that occurs in patients across different AD stages (1). AD is a complex and potentially heterogenous disease, with no proven cure and no single risk factor to isolate and measure, whilst known risk factors do not fully account for the risk of developing this disease (2). Since the 1990’s, technological advancements in neuroimaging have allowed us to visualise the wide organisational structure of the brain (3) and later developments led to capturing information of brain ‘functionality’, as well as the visualisation and measurement of the aggregation and accumulation of AD-related pathology. Thus, in vivo brain imaging has and will continue to be an instrumental tool in clinical research, mainly in the pre-clinical disease stages, aimed at elucidating the biological complex processes and interactions underpinning the onset and progression of cognitive decline and dementia. The growing societal burden of AD/ADRD means that there has never been a greater need, nor a better time, to use such powerful and sensitive tools to aid our understanding of this undoubtedly complex disease. It is by consolidating and reflecting on these imaging advancements and developing long-term strategies across different disciplines, that we can move closer to our goal of dementia prevention. This short commentary will outline recent developments in neuroimaging in the field of AD and dementia by first describing the historical context of AD classification and the introduction of AD imaging biomarkers, followed by some examples of significant recent developments in neuroimaging methods and technologies.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122013
Author(s):  
Jihui Jia ◽  
Jingwei Li ◽  
Yunfeng Liang ◽  
Bo Peng

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Laura Drago ◽  
Diana Ferro ◽  
Rigers Bakiu ◽  
Loriano Ballarin ◽  
Gianfranco Santovito

Typical 2-Cys peroxiredoxins (2-Cys Prdxs) are proteins with antioxidant properties belonging to the thioredoxin peroxidase family. With their peroxidase activity, they contribute to the homeostatic control of reactive oxygen species (ROS) and, therefore, participate in various physiological functions, such as cell proliferation, differentiation, and apoptosis. Although Prdxs have been shown to be potential biomarkers for monitoring aquatic environments, minimal scientific attention has been devoted to describing their molecular architecture and function in marine invertebrates. Our study aims to clarify the protective role against stress induced by exposure to metals (Cu, Zn, and Cd) of three Prdxs (Prdx2, Prdx3, and Prdx4) in the solitary ascidian Ciona robusta, an invertebrate chordate. Here, we report a detailed pre- and post-translational regulation of the three Prdx isoforms. Data on intestinal mRNA expression, provided by qRT-PCR analyses, show a generalized increase for Prdx2, -3, and -4, which is correlated to metal accumulation. Furthermore, the increase in tissue enzyme activity observed after Zn exposure is slower than that observed with Cu and Cd. The obtained results increase our knowledge of the evolution of anti-stress proteins in invertebrates and emphasize the importance of the synthesis of Prdxs as an efficient way to face adverse environmental conditions.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Edward T. Samulski ◽  
Denisse Reyes-Arango ◽  
Alexandros G. Vanakaras ◽  
Demetri J. Photinos

The nature of the nanoscale structural organization in modulated nematic phases formed by molecules having a nonlinear molecular architecture is a central issue in contemporary liquid crystal research. Nevertheless, the elucidation of the molecular organization is incomplete and poorly understood. One attempt to explain nanoscale phenomena merely “shrinks down” established macroscopic continuum elasticity modeling. That explanation initially (and mistakenly) identified the low temperature nematic phase (NX), first observed in symmetric mesogenic dimers of the CB-n-CB series with an odd number of methylene spacers (n), as a twist–bend nematic (NTB). We show that the NX is unrelated to any of the elastic deformations (bend, splay, twist) stipulated by the continuum elasticity theory of nematics. Results from molecular theory and computer simulations are used to illuminate the local symmetry and physical origins of the nanoscale modulations in the NX phase, a spontaneously chiral and locally polar nematic. We emphasize and contrast the differences between the NX and theoretically conceivable nematics exhibiting spontaneous modulations of the elastic modes by presenting a coherent formulation of one-dimensionally modulated nematics based on the Frank–Oseen elasticity theory. The conditions for the appearance of nematic phases presenting true elastic modulations of the twist–bend, splay–bend, etc., combinations are discussed and shown to clearly exclude identifications with the nanoscale-modulated nematics observed experimentally, e.g., the NX phase. The latter modulation derives from packing constraints associated with nonlinear molecules—a chiral, locally-polar structural organization indicative of a new type of nematic phase.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009748
Author(s):  
Benjamin G. Weiner ◽  
Andrew G. T. Pyo ◽  
Yigal Meir ◽  
Ned S. Wingreen

Eukaryotic cells partition a wide variety of important materials and processes into biomolecular condensates—phase-separated droplets that lack a membrane. In addition to nonspecific electrostatic or hydrophobic interactions, phase separation also depends on specific binding motifs that link together constituent molecules. Nevertheless, few rules have been established for how these ubiquitous specific, saturating, motif-motif interactions drive phase separation. By integrating Monte Carlo simulations of lattice-polymers with mean-field theory, we show that the sequence of heterotypic binding motifs strongly affects a polymer’s ability to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large blocks of single motifs typically form more inter-polymer bonds, which promotes phase separation. Notably, the sequence of binding motifs influences phase separation primarily by determining the conformational entropy of self-bonding by single polymers. This contrasts with systems where the molecular architecture primarily affects the energy of the dense phase, providing a new entropy-based mechanism for the biological control of phase separation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Esther Sasson ◽  
Shira Anzi ◽  
Batia Bell ◽  
Oren Yakovian ◽  
Meshi Zorsky ◽  
...  

Tight junctions (TJs) between blood-brain barrier (BBB) endothelial cells construct a robust physical barrier, whose damage underlies BBB dysfunctions related to several neurodegenerative diseases. What makes these highly specialized BBB-TJs extremely restrictive remains unknown. Here, we use super-resolution microscopy (dSTORM) to uncover new structural and functional properties of BBB TJs. Focusing on three major components, Nano-scale resolution revealed sparse (occludin) vs. clustered (ZO1/claudin-5) molecular architecture. In mouse development, permeable TJs become first restrictive to large molecules, and only later to small molecules, with claudin-5 proteins arrangement compacting during this maturation process. Mechanistically, we reveal that ZO1 clustering is independent of claudin-5 in-vivo. In contrast to accepted knowledge, we found that in the developmental context, total levels of claudin-5 inversely correlate with TJ functionality. Our super-resolution studies provide a unique perspective of BBB TJs and open new directions for understanding TJ functionality in biological barriers, ultimately enabling restoration in disease or modulation for drug delivery.


Export Citation Format

Share Document