Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

evaporative water
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 49)

H-INDEX

46
(FIVE YEARS 2)

Author(s):  
Vinícius de França Carvalho Fonsêca ◽  
Roberto Gomes da Silva ◽  
Gustavo A. B. Moura ◽  
Edward P. Snelling ◽  
Andrea Fuller ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Zenon J. Czenze ◽  
Marc T. Freeman ◽  
Ryno Kemp ◽  
Barry van Jaarsveld ◽  
Blair O. Wolf ◽  
...  

Avian evaporative cooling and the maintenance of body temperature (Tb) below lethal limits during heat exposure has received more attention in small species compared to larger-bodied taxa. Here, we examined thermoregulation at air temperatures (Tair) approaching and exceeding normothermic Tb in three larger birds that use gular flutter, thought to provide the basis for pronounced evaporative cooling capacity and heat tolerance. We quantified Tb, evaporative water loss (EWL) and resting metabolic rate (RMR) in the ∼170-g Namaqua sandgrouse (Pterocles namaqua), ∼430-g spotted thick-knee (Burhinus capensis) and ∼670-g spotted eagle-owl (Bubo africanus), using flow-through respirometry and a stepped Tair profile with very low chamber humidities. All three species tolerated Tair of 56–60°C before the onset of severe hyperthermia, with maximum Tb of 43.2°C, 44.3°C, and 44.2°C in sandgrouse, thick-knees and eagle-owls, respectively. Evaporative scope (i.e., maximum EWL/minimum thermoneutral EWL) was 7.4 in sandgrouse, 12.9 in thick-knees and 7.8 in eagle-owls. The relationship between RMR and Tair varied substantially among species: whereas thick-knees and eagle-owls showed clear upper critical limits of thermoneutrality above which RMR increased rapidly and linearly, sandgrouse did not. Maximum evaporative heat loss/metabolic heat production ranged from 2.8 (eagle-owls) to 5.5 (sandgrouse), the latter the highest avian value yet reported. Our data reveal some larger species with gular flutter possess pronounced evaporative cooling capacity and heat tolerance and, when taken together with published data, show thermoregulatory performance varies widely among species larger than 250 g. Our data for Namaqua sandgrouse reveal unexpectedly pronounced variation in the metabolic costs of evaporative cooling within the genus Pterocles.


2021 ◽  
Author(s):  
Tao Song ◽  
Liankai Zhang ◽  
Pengyu Liu ◽  
Shengzhang Zou ◽  
Yi Zhao ◽  
...  

Abstract Five water stand for five forms existence models of water. In Karst area, Five water means precipitation, groundwater, evapotranspiration water, soil water, and overland flow. The complicated water-bearing hydrogeological media and the inhomogeneous water storage structure leads to low efficiency of water utilization. To reveal intricated water resources transformation in karst areas, a typical epikarst zone was selected. The Five water and their conversion processes were studied and the transformation models was built based on the long-term positioning observations. The results show that: (1) Overland flow can be generated when precipitation reaches 6 mm and lasts for 6 h. Under light and moderate rainfall (LMR) conditions, less than 6% of the precipitation is converted to overland flow. Under heavy rainfall and rainstorm (HRR) conditions, the conversion rate is 3.5%-6%. (2) Under the condition of LMR, there are 2%-3.5%, 40%-60% and 25%-35% that transformed to vegetation water, soil water and groundwater respectively, while it is 1.5%-2.2%, 25%-30% and 32%-50% under the condition of HRR. (3) The proportion of precipitation was transformed to soil water is 20%-70%. (4) The conversion rate of groundwater and karst fissure water for LMR conditions are 8%-15% and 10%-15%, and that for HRR is 15%- 20% and 20%-35%. (5) The proportions of different degrees of precipitation transformed into vegetation transpiration and evaporation water are 1.5%-3.5% and 6%-9%, respectively. (6) Generally, about 0%-4% of the precipitation is converted into overland flow, 20%-70% into soil water, 25%-50% into karst groundwater, and 1%-10% into evaporative water.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lucas Navarrete ◽  
Francisco Bozinovic ◽  
Isaac Peña-Villalobos ◽  
Carolina Contreras-Ramos ◽  
Juan C. Sanchez-Hernandez ◽  
...  

Predictions indicate that birds worldwide will be affected by global warming and extreme climatic events which is especially relevant for passerines because the diurnal habits, small body size, and high mass-adjusted metabolic rates of this group make it particularly susceptible to increases in temperature and aridity. Some bird species respond to conditions that stress osmoregulation by increasing their rates of energy expenditure, nevertheless, the effect of dehydration on metabolic rates in birds has produced contrasting results. It also remains unknown whether hydration state may cause shifts in tissue-specific metabolic rates or modify tissue oxidative status. We used the rufous-collared sparrow (Zonotrichia capensis), to experimentally test the effect of dehydration on metabolic enzymes in erythrocytes, tissue oxidative status, basal metabolic rate (BMR), and total evaporative water loss. We found a significant increase in mass-adjusted BMR in water restricted (WR) birds compared to control birds (CT). Activity of cytochrome-c-oxidase (COX) in red blood cells (RBCs) was also significantly higher in the WR group relative to the CT group and this activity was positively correlated with mass-adjusted BMR. We found a moderate effect of water restriction on membrane damage of skeletal muscle. In a second set of individuals subjected to the same experimental conditions, lean mass and total water were tightly correlated and decreased by 10 and 12%, respectively, in birds in the WR group relative to the CT group. Decreases in total water and lean mass leads to an increase in mass-adjusted BMR in WR Z. capensis, suggesting that birds may simultaneously increase protein catabolism and production of metabolic water through oxidation. The significant positive relationship between BMR and COX in RBCs is a finding that requires additional research to determine whether erythrocyte metabolism is affected by dehydration per se and or it more generally reflects rates of energy expenditure in birds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liam P. McGuire ◽  
Nathan W. Fuller ◽  
Yvonne A. Dzal ◽  
Catherine G. Haase ◽  
Brandon J. Klüg-Baerwald ◽  
...  

AbstractHibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.


2021 ◽  
Vol 25 (10) ◽  
pp. 5399-5413
Author(s):  
Hongxiu Wang ◽  
Jingjing Jin ◽  
Buli Cui ◽  
Bingcheng Si ◽  
Xiaojun Ma ◽  
...  

Abstract. Soil evaporation is a key process in the water cycle and can be conveniently quantified using δ2H and δ18O in bulk surface soil water (BW). However, recent research shows that soil water in larger pores evaporates first and differs from water in smaller pores in δ2H and δ18O, which disqualifies the quantification of evaporation from BW δ2H and δ18O. We hypothesized that BW had different isotopic compositions from evaporating water (EW). Therefore, our objectives were to test this hypothesis first and then evaluate whether the isotopic difference alters the calculated evaporative water loss. We measured the isotopic composition of soil water during two continuous evaporation periods in a summer maize field. Period I had a duration of 32 d, following a natural precipitation event, and period II lasted 24 d, following an irrigation event with a 2H-enriched water. BW was obtained by cryogenically extracting water from samples of 0–5 cm soil taken every 3 d; EW was derived from condensation water collected every 2 d on a plastic film placed on the soil surface. The results showed that when event water was heavier than pre-event BW, δ2H of BW in period II decreased, with an increase in evaporation time, indicating heavy water evaporation. When event water was lighter than the pre-event BW, δ2H and δ18O of BW in period I and δ18O of BW in period II increased with increasing evaporation time, suggesting light water evaporation. Moreover, relative to BW, EW had significantly smaller δ2H and δ18O in period I and significantly smaller δ18O in period II (p<0.05). These observations suggest that the evaporating water was close to the event water, both of which differed from the bulk soil water. Furthermore, the event water might be in larger pores from which evaporation takes precedence. The soil evaporative water losses derived from EW isotopes were compared with those from BW. With a small isotopic difference between EW and BW, the evaporative water losses in the soil did not differ significantly (p>0.05). Our results have important implications for quantifying evaporation processes using water stable isotopes. Future studies are needed to investigate how soil water isotopes partition differently between pores in soils with different pore size distributions and how this might affect soil evaporation estimation.


2021 ◽  
Author(s):  
◽  
Kristina A. Muise ◽  

During winter, many mammals hibernate and lower their body temperature and metabolic rate (MR) in prolonged periods of torpor. Hibernators will use energetically expensive arousals (i.e., restore body temperature and MR) presumably to re-establish water balance. Some hibernating mammals however will huddle in groups, possibly to decrease energetic costs and total evaporative water loss (EWL), although the benefit is not fully understood. Research on the relationship between behaviour, physiology, water loss, and energy expenditure of bats during hibernation is especially important because of a fungal disease called white-nose syndrome (WNS). To date, 12 North American bat species are affected by WNS, however big brown bats (Eptesicus fuscus) appear resistant, although the underlying mechanism is poorly understood. The overall objective of my thesis was to understand the influence of humidity and huddling on the behavioural and physiological responses of hibernating big brown bats. To test my hypotheses, I used a captive colony of hibernating big brown bats (n = 20). Specifically, for Chapter 2, I first tested the hypothesis that big brown bats adjust huddling and drinking behaviour depending on humidity, to maintain a consistent pattern of periodic arousals, and therefore energy balance during hibernation. I found that bats hibernating in a dry environment did not differ in arousal/torpor bout frequency, or torpor bout duration throughout hibernation but drank at twice the rate as bats in a humid environment. Bats in the dry treatment also had shorter arousals, and huddled in a denser huddle, potentially to reduce rates of total EWL. During late hibernation, for Chapter 3, I used open-flow respirometry to test two additional hypotheses, first that phenotypic flexibility in total EWL helps explain the tolerance of hibernating big brown bats for a wide range of humidity relative to other bat species. I found that dry-acclimated bats had lower rates of total EWL, compared to bats acclimated to humid conditions. I then tested the second hypothesis that big brown bats can use huddling to mitigate the challenge of dry conditions. I found that, for humid-acclimated bats, rates of total EWL were reduced with huddling bats but there was no effect of huddling on EWL for bats acclimated to dry conditions. These results suggest that the ability of big brown bats to reduce rates of total EWL through acclimation may reduce the need to huddle with conspecifics to avoid water loss and thus dehydration. Overall, my thesis suggests that big brown bats use both behavioural and physiological mechanisms to reduce water loss which could allow them to exploit habitats for hibernation that are unavailable to other bat species and could also help explain their apparent resistance to WNS.


2021 ◽  
Author(s):  
Xing Wang ◽  
Dehuang Kong ◽  
Gertjan van Dijk ◽  
Harro Meijer

Abstract The Doubly Labelled Water (DLW) method is widely used to determine energy expenditure. In this work, we demonstrate the addition of the third stable isotope, 17O, to turn it into Triply Labelled Water (TLW), using the three isotopes measurement of optical spectrometry. We performed TLW (2H, 18O and17O) measurements for the analysis of the CO2 production (rCO2) of mice on different diets for the first time. Triply highly enriched water was injected into mice, and the isotope enrichments of the distilled blood samples of one initial and two finals were measured by an Off-Axis Integrated Cavity Output Spectroscopy instrument. We evaluated the impact of different calculation protocols and the values of evaporative water loss fraction. We found that the dilution space and turnover rates of 17O and 18O were equal for the same mice group, and that values of rCO2 calculated based on 18O-2H, or on 17O-2H agreed very well. This increases the reliability and redundancy of the measurements and it lowers the uncertainty in the calculated rCO2 to 3% when taking the average of two DLW methods. However, the TLW method overestimated the rCO2 compared to the indirect calorimetry measurements that we also performed, much more for the mice on a high-fat diet than for low-fat. We hypothesize an extra loss or exchange mechanism with a high fractionation for 2H to explain this difference.


2021 ◽  
Author(s):  
Anamarija Žagar ◽  
Miguel Angel Carretero ◽  
Maarten de Groot

Abstract Higher air temperatures and drier conditions may create stronger water vapour pressure and increase rates of cutaneous water loss, while elevated body temperatures may in turn directly speed up metabolic rates that lead to higher respiratory water loss. Therefore, water budgets are an important organismal trait for understanding their responses to climate change. The most common method of water loss estimation combines respiratory and cutaneous pathways by measuring body weight loss over a defined period of time. Currently, obtained values are often summed or averaged for population or species comparisons. We warn about potential statistical problems using average or summed values of water loss due to emerging temporal patterns. In this study we used a model dataset of lizards and to investigate temporal patterns in water loss datasets. We found that temporal patterns strongly vary across datasets and often deviate from the summed/average profile. Also, the duration of the experiment needs to remain long enough to detect the temporal patterns and produce representative results, while averages at different end-points of the experiment will also vary with temporal patterns. We propose that a simple statistical approach including hour of the experiment as non-linear explanatory variable in GAMM is used to investigate and adequately account for temporal patterns, which will ensure comparability of studies using meta-analyses in the future. Found signal of temporal variation in water loss also suggests that it holds significant biological relevance, potentially mostly connected to behavioural but also physiological adjustments and needs research attention in the future.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bernhard Paces ◽  
Barbara M. Waringer ◽  
Adi Domer ◽  
Darren Burns ◽  
Yoram Zvik ◽  
...  

Migratory birds are often not specifically adapted to arid conditions, yet several species travel across deserts during their journeys, and often have more or less short stopovers there. We investigated whether differences in thermoregulatory mechanisms, specifically evaporative cooling, explain the different behavior of three passerine species while stopping over in the Negev desert, Israel. We measured cutaneous water loss (CWL) under ambient conditions and the temperature of panting onset in an experimental setup. In addition, we performed behavioral observations of birds at a stopover site where we manipulated water availability. Blackcaps had slightly higher CWL at relatively low temperatures than Willow Warblers and Lesser Whitethroats. When considered relative to total body mass, however, Willow Warblers had the highest CWL of the three species. Blackcaps started panting at lower ambient temperature than the other two species. Taken together, these results suggest that Willow Warblers are the most efficient in cooling their body, possibly with the cost of needing to regain water by actively foraging during their staging. Lesser Whitethroats had a similar pattern, which was reflected in their slightly higher levels of activity and drinking behavior when water was available. However, in general the behavior of migratory species was not affected by the availability of water, and they were observed drinking rather rarely. Our results indicate that differences in thermoregulatory mechanisms might be at the basis of the evolution of different stopover strategies of migratory birds while crossing arid areas such as deserts.


Export Citation Format

Share Document