Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

last interglacial
Recently Published Documents


TOTAL DOCUMENTS

1345
(FIVE YEARS 381)

H-INDEX

81
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Maria Vittoria Guarino ◽  
Louise Sime ◽  
David Schroeder ◽  
Jeff Ridley

Abstract. The Heinrich 11 event is simulated using the HadGEM3 model during the Last Interglacial period. We apply 0.2 Sv of meltwater forcing across the North Atlantic during a 250 years long simulation. We find that the strength of the Atlantic Meridional Overturning Circulation is reduced by 60 % after 150 years of meltwater forcing, with an associated decrease of 0.2 to 0.4 PW in meridional ocean heat transport at all latitudes. The changes in ocean heat transport affect surface temperatures. The largest increase in the meridional surface temperature gradient occurs between 40–50 N. This increase is associated with a strengthening of 20 % in 850 hPa winds. The stream jet intensification in the Northern Hemisphere in return alters the temperature structure of the ocean heat through an increased gyre circulation, and associated heat transport (+0.1–0.2 PW), at the mid-latitudes, and a decreased gyre ocean heat transport (−0.2 PW) at high-latitudes. The changes in meridional temperature and pressure gradients cause the Intertropical Convergence Zone (ITCZ) to move southward, leading to stronger westerlies and a more positive Southern Annual Mode (SAM) in the Southern Hemisphere. The positive SAM influences sea ice formation leading to an increase in Antarctic sea ice. Our coupled-model simulation framework shows that the classical "thermal bipolar see-saw'' has previously undiscovered consequences in both Hemispheres: these include Northern Hemisphere gyre heat transport and wind changes; alongside an increase in Antarctic sea ice during the first 250 years of meltwater forcing.


Author(s):  
Anastasia Nikulina ◽  
Katharine MacDonald ◽  
Fulco Scherjon ◽  
Elena A. Pearce ◽  
Marco Davoli ◽  
...  

AbstractWe review palaeoenvironmental proxies and combinations of these relevant for understanding hunter-gatherer niche construction activities in pre-agricultural Europe. Our approach consists of two steps: (1) identify the possible range of hunter-gatherer impacts on landscapes based on ethnographic studies; (2) evaluate proxies possibly reflecting these impacts for both the Eemian (Last Interglacial, Middle Palaeolithic) and the Early–Middle Holocene (Mesolithic). We found these paleoenvironmental proxies were not able to unequivocally establish clear-cut differences between specific anthropogenic, climatic and megafaunal impacts for either time period in this area. We discuss case studies for both periods and show that published evidence for Mesolithic manipulation of landscapes is based on the interpretation of comparable data as available for the Last Interglacial. If one applies the ‘Mesolithic’ interpretation schemes to the Neanderthal record, three common niche construction activities can be hypothesised: vegetation burning, plant manipulation and impact on animal species presence and abundance. Our review suggests that as strong a case can be made for a Neanderthal impact on landscapes as for anthropogenic landscape changes during the Mesolithic, even though the Neanderthal evidence comes from only one high-resolution site complex. Further research should include attempts (e.g. by means of modelling studies) to establish whether hunter-gatherer impact on landscapes played out at a local level only versus at a larger scale during both time periods, while we also need to obtain comparative data on the population sizes of Last Interglacial and Holocene hunter-gatherers, as these are usually inferred to have differed significantly.


2022 ◽  
Author(s):  
Minoru Chikira ◽  
Yohei Yamada ◽  
Ayako Abe-Ouchi ◽  
Masaki Satoh

AbstractNonhydrostatic Icosahedral Atmospheric Model (NICAM) coupled with a slab ocean model was applied to a paleoclimate research for the first time. The model was run at a horizontal resolution of 56 km with and without a convective parameterization, given the orbital parameters of the last interglacial (127,000 years before present). The simulated climatological mean-states are qualitatively similar to those in previous studies reinforcing their robustness, however, the resolution of this model enables to represent the narrow precipitation band along the southern edge of the Tibetan Plateau. A particular focus was given to convectively coupled disturbances in our analysis. The simulated results show a greater signal of the Madden–Julian Oscillation and weakening of the moist Kelvin waves. Although the model's representation of the boreal summer intraseasonal oscillation in the present-day simulations is not satisfactory, a significant enhancement of its signal is found in the counterpart of the last interglacial. The density of the tropical cyclones decreases over the western north Pacific, north Atlantic and increases over the south Indian Ocean and south Atlantic. The model's performance is generally better when the convective parameterization is used, but the tropical cyclones are better represented without the convective parameterization. Additional simulations using the low-resolution topography reveals that the better representation of the Tibetan Plateau enhances the boreal summer Asian monsoon and its impact is similar and comparable to that of the orbital parameters over the south Asia and the Indian Ocean.


2021 ◽  
Vol 28 (6) ◽  
pp. 319-326
Author(s):  
Kamil Candan ◽  
Çetin Ilgaz ◽  
Yusuf Kumlutaş ◽  
Serkan Gül

The Taurus Mountains that have a very rich biodiversity are one of the most important mountain chains in Anatolia. In this study, we examined distribution patterns of Chalcides ocellatus that has a restricted dispersal between the Taurus Mountains from the past to current using ecological niche modeling. The Taurus Mountains have played the role as a refugium area in which C. ocellatus could survive through a period of unfavorable conditions. Especially in the glaciation period, Amanos Mountains in the Middle Taurus as an isolating barrier appeared unsuitable habitats for the lineages of C. ocellatus. This indicated that the lineages of C. ocellatus were formed as a result of habitat fragmentation during the last glacial maximum and last interglacial, and were consequently adapted to different climatic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi Yao ◽  
Xinyu Wang ◽  
Kailai Wang ◽  
Wenhao Yu ◽  
Purong Deng ◽  
...  

Narrow-ranged species face challenges from natural disasters and human activities, and to address why species distributes only in a limited region is of great significance. Here we investigated the genetic diversity, gene flow, and genetic differentiation in six wild and three cultivated populations of Thuja sutchuenensis, a species that survive only in the Daba mountain chain, using chloroplast simple sequence repeats (cpSSR) and nuclear restriction site-associated DNA sequencing (nRAD-seq). Wild T. sutchuenensis populations were from a common ancestral population at 203 ka, indicating they reached the Daba mountain chain before the start of population contraction at the Last Interglacial (LIG, ∼120–140 ka). T. sutchuenensis populations showed relatively high chloroplast but low nuclear genetic diversity. The genetic differentiation of nRAD-seq in any pairwise comparisons were low, while the cpSSR genetic differentiation values varied with pairwise comparisons of populations. High gene flow and low genetic differentiation resulted in a weak isolation-by-distance effect. The genetic diversity and differentiation of T. sutchuenensis explained its survival in the Daba mountain chain, while its narrow ecological niche from the relatively isolated and unique environment in the “refugia” limited its distribution.


2021 ◽  
Vol 7 (51) ◽  
Author(s):  
Wil Roebroeks ◽  
Katharine MacDonald ◽  
Fulco Scherjon ◽  
Corrie Bakels ◽  
Lutz Kindler ◽  
...  

2021 ◽  
Vol 4 (6) ◽  
Author(s):  
S.A. KUZMINA ◽  
L.A. SAVELIEVA ◽  
S.S. POPOVA ◽  
F.E. MAKSIMOV ◽  
V.YU. KUZNETSOV ◽  
...  

New data on fossil insects, soil and freshwater invertebrates, plant macrofossils, pollen and spores were obtained from a problematic lower unit of the reference section Bely Yar-II (Tunka Rift, Baikal Region, Russia). The invertebrates show a natural succession from a small lake to a wetland; plant macrofossils confirm the early stages of succession. Pollen and spore data reflect a wide range of environments and vegetation from moderate climate supporting regional forests to relatively cold, dry parkland. New Uranium-Thorium data (99 ± 20 ka and 101 ± 13 ka), along with environmental reconstructions, indicate that the lower unit was probably formed during one of the cold sub-stages towards the end the last inter-glaciation (MIS5).


2021 ◽  
Vol 12 ◽  
Author(s):  
Gaku Ueki ◽  
Sheng-Nan Zhang ◽  
Xue-Jiao Zhu ◽  
Xiu-Jun Wen ◽  
Koji Tojo ◽  
...  

To deepen understanding the evolutionary process of lucanid–yeast association, the lateral transmission process of yeast symbionts among stag beetle genera Platycerus and Prismognathus around the border between Japan and South Korea was estimated based on molecular analyses and species distribution modelings. Phylogenetic analyses were based on yeast ITS and IGS sequences and beetle COI sequences using Prismognathus dauricus from the Tsushima Islands and Pr. angularis from Kyushu, Japan, as well as other sequence data from our previous studies. The range overlap based on the species distribution model (SDM) and differentiation in ecological space were analyzed. Based on the IGS sequences, Clade II yeast symbionts were shared by Platycerus hongwonpyoi and Pr. dauricus in South Korea and the Tsushima Islands, and Platycerus viridicuprus in Japan. Clade III yeasts were shared by Pr. dauricus from the Tsushima Islands and Pr. angularis in Japan. During the Last Interglacial period when the land bridge between Japan and the Korean Peninsula existed, range overlap was predicted to occur between Pl. viridicuprus and Pr. dauricus in Kyushu and between Pr. dauricus and Pr. angularis in Kyushu and the Tsushima Islands. The ecological space of Pl. hongwonpyoi was differentiated from that of Pl. viridicuprus and Pr. angularis. We demonstrated the paleogeographical lateral transmission process of Scheffersomyces yeast symbionts among lucanid genera and species: putative transmission of yeasts from Pr. dauricus to Pl. viridicuprus in Kyushu and from Pr. angularis to Pr. dauricus in Kyushu or the Tsushima Islands. We also found that the yeast symbionts are likely being replaced in Pr. dauricus on the Tsushima Islands. We present novel estimates of the lateral transmission process of microbial symbionts based on phylogenetic, SDM and environmental analyses among lucanid beetles.


Author(s):  
Charlotte Honiat ◽  
Daniela Festi ◽  
Paul S. Wilcox ◽  
R. Lawrence Edwards ◽  
Hai Cheng ◽  
...  

Export Citation Format

Share Document