Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

overlapping community detection
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 87)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Guilherme Oliveira Chagas ◽  
Luiz Antonio Nogueira Lorena ◽  
Rafael Duarte Coelho dos Santos

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ping Wang ◽  
Yonghong Huang ◽  
Fei Tang ◽  
Hongtao Liu ◽  
Yangyang Lu

Detecting the community structure and predicting the change of community structure is an important research topic in social network research. Focusing on the importance of nodes and the importance of their neighbors and the adjacency information, this article proposes a new evaluation method of node importance. The proposed overlapping community detection algorithm (ILE) uses the random walk to select the initial community and adopts the adaptive function to expand the community. It finally optimizes the community to obtain the overlapping community. For the overlapping communities, this article analyzes the evolution of networks at different times according to the stability and differences of social networks. Seven common community evolution events are obtained. The experimental results show that our algorithm is feasible and capable of discovering overlapping communities in complex social network efficiently.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing Liu ◽  
Junfang Guo ◽  
Qi Li

Community structure is one of the most important characteristics of complex networks, which has important applications in sociology, biology, and computer science. The community detection method based on local expansion is one of the most adaptable overlapping community detection algorithms. However, due to the lack of effective seed selection and community optimization methods, the algorithm often gets community results with lower accuracy. In order to solve these problems, we propose a seed selection algorithm of fusion degree and clustering coefficient. The method calculates the weight value corresponding to degree and clustering coefficient by entropy weight method and then calculates the weight factor of nodes as the seed node selection order. Based on the seed selection algorithm, we design a local expansion strategy, which uses the strategy of optimizing adaptive function to expand the community. Finally, community merging and isolated node adjustment strategies are adopted to obtain the final community. Experimental results show that the proposed algorithm can achieve better community partitioning results than other state-of-the-art algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Junjie Jia ◽  
Pengtao Liu ◽  
Xiaojin Du ◽  
Yuchao Zhang

Aiming at the problem of the lack of user social attribute characteristics in the process of dividing overlapping communities in multilayer social networks, in this paper, we propose a multilayer social network overlapping community detection algorithm based on trust relationship. By combining structural trust and social attribute trust, we transform a complex multilayer social network into a single-layer trust network. We obtain the community structure according to the community discovery algorithm based on trust value and merge communities with higher overlap. The experimental comparison and analysis are carried out on the synthetic network and the real network, respectively. The experimental results show that the proposed algorithm has higher harmonic mean and modularity than other algorithms of the same type.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
László Hajdu ◽  
Miklós Krész ◽  
András Bóta

AbstractBoth community detection and influence maximization are well-researched fields of network science. Here, we investigate how several popular community detection algorithms can be used as part of a heuristic approach to influence maximization. The heuristic is based on the community value, a node-based metric defined on the outputs of overlapping community detection algorithms. This metric is used to select nodes as high influence candidates for expanding the set of influential nodes. Our aim in this paper is twofold. First, we evaluate the performance of eight frequently used overlapping community detection algorithms on this specific task to show how much improvement can be gained compared to the originally proposed method of Kempe et al. Second, selecting the community detection algorithm(s) with the best performance, we propose a variant of the influence maximization heuristic with significantly reduced runtime, at the cost of slightly reduced quality of the output. We use both artificial benchmarks and real-life networks to evaluate the performance of our approach.


2021 ◽  
Vol 26 (5) ◽  
pp. 706-723
Author(s):  
Baohua Sun ◽  
Richard Al-Bayaty ◽  
Qiuyuan Huang ◽  
Dapeng Wu

Export Citation Format

Share Document