Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

hek 293
Recently Published Documents


TOTAL DOCUMENTS

1613
(FIVE YEARS 299)

H-INDEX

85
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Lev I. Levitsky ◽  
Ksenia Kuznetsova ◽  
Anna A. Kliuchnikova ◽  
Irina Y. Ilina ◽  
Anton O. Goncharov ◽  
...  

Mass spectrometry-based proteome analysis usually implies matching mass spectra of proteolytic peptides to amino acid sequences predicted from nucleic acid sequences. At the same time, due to the stochastic nature of the method when it comes to proteome-wide analysis, in which only a fraction of peptides are selected for sequencing, the completeness of protein sequence identification is undermined. Likewise, the reliability of peptide variant identification in proteogenomic studies is suffering. We propose a way to interpret shotgun proteomics results, specifically in data-dependent acquisition mode, as protein sequence coverage by multiple reads, just as it is done in the field of nucleic acid sequencing for the calling of single nucleotide variants. Multiple reads for each position in a sequence could be provided by overlapping distinct peptides, thus, confirming the presence of certain amino acid residues in the overlapping stretch with much lower false discovery rate than conventional 1%. The source of overlapping distinct peptides are, first, miscleaved tryptic peptides in combination with their properly cleaved counterparts, and, second, peptides generated by several proteases with different specificities after the same specimen is subject to parallel digestion and analyzed separately. We illustrate this approach using publicly available multiprotease proteomic datasets and our own data generated for HEK-293 cell line digests obtained using trypsin, LysC and GluC proteases. From 5000 to 8000 protein groups are identified for each digest corresponding to up to 30% of the whole proteome coverage. Most of this coverage was provided by a single read, while up to 7% of the observed protein sequences were covered two-fold and more. The proteogenomic analysis of HEK-293 cell line revealed 36 peptide variants associated with SNP, seven of which were supported by multiple reads. The efficiency of the multiple reads approach depends strongly on the depth of proteome analysis, the digesting features such as the level of miscleavages, and will increase with the number of different proteases used in parallel proteome digestion.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Valeria Lodde ◽  
Matteo Floris ◽  
Rachel Munk ◽  
Jennifer L. Martindale ◽  
Davide Piredda ◽  
...  

AbstractRNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 354
Author(s):  
Nasima Arshad ◽  
Muhammad Ismail Mir ◽  
Fouzia Perveen ◽  
Aneela Javed ◽  
Memona Javaid ◽  
...  

Imidazolidine and thiazolidine-based isatin derivatives (IST-01–04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound–DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.


2022 ◽  
Author(s):  
Oliver N Mann ◽  
Chow-Send Kong ◽  
Emma S Lucas ◽  
Jan J Brosens ◽  
Aylin C Hanyaloglu ◽  
...  

The human luteinising hormone chorionic gonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity and identified a small subpopulation of stromal cells with discernible LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.


Author(s):  
Surendar Chitti ◽  
Sravani Pulya ◽  
Adinarayana Nandikolla ◽  
Tarun Kumar Patel ◽  
Karan Kumar Banoth ◽  
...  

Aim: Literature reports suggest spirochromanone derivatives exhibit anticancer activity. Methodology: The authors designed and synthesized 18 spirochromanone derivatives (Csp 1–18). The compounds were characterized and evaluated for anticancer activity against human breast cancer (MCF-7) and murine melanoma (B16F10) cell lines. Results: The anticancer activity ranged from 4.34 to 29.31 μm. The most potent compounds, Csp 12 and Csp 18, were less toxic against the human embryonic kidney (HEK-293) cell line and ∼ two/∼four fold selective toward MCF-7 than B16F10 in comparison to the reference, BG-45. Csp 12 caused 28.6% total apoptosis, leading to significant cytotoxicity, and arrested the G2 phase of the cell cycle in B16F10 cells. A molecular docking study of Csp 12 exhibited effective binding at the active site of the epidermal growth factor receptor kinase domain. Conclusion: This study highlights the importance of spirochromanones as anticancer agents.


2022 ◽  
Vol 15 (1) ◽  
pp. 71
Author(s):  
Enas Al-Ani ◽  
Wayne Heaselgrave

The aim of this study was to investigate the potential of thymol to inhibit Candida biofilm formation and improve thymol biocompatibility in the presence of hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (P407), as possible drug carriers. Thymol with and without polymers were tested for its ability to inhibit biofilm formation, its effect on the viability of biofilm and biocompatibility studies were performed on HEK 293 (human embryonic kidney) cells. Thymol showed a concentration dependent biofilm inhibition; this effect was slightly improved when it was combined with HPMC. The Thymol-P407 combination completely inhibited the formation of biofilm and the antibiofilm effect of thymol decreased as the maturation of Candida biofilms increased. The effect of thymol on HEK 293 cells was a loss of nearly 100% in their viability at a concentration of 250 mg/L. However, in the presence of P407, the viability was 25% and 85% using neutral red uptake and sulforhodamine B assays, respectively. While, HPMC had less effect on thymol activity the thymol-P407 combination showed a superior inhibitory effect on biofilm formation and better biocompatibility with human cell lines. The combination demonstrates a potential medical use for the prevention of Candida biofilm formation.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001496
Author(s):  
Zhiyong Bai ◽  
Jianlin Feng ◽  
Gijs A. C. Franken ◽  
Namariq Al’Saadi ◽  
Na Cai ◽  
...  

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of Trpm7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis.


Author(s):  
Olexandra Ilkov ◽  
Nazar Manko ◽  
Svitlana Bilous ◽  
Gennadi Didikin ◽  
Olga Klyuchivska ◽  
...  

Abstract The aim of the work is to to ascertain their antibacterial activity, as well as the toxic effects toward human cells of composites of silver nanoparticles immobilized by electron-beam technology onto crystals of antimicrobial agents metronidazole and levofloxacin The assessment of antibacterial activity and cytotoxic action of silver naonparticled metronidazole and levofloxacin composites was carried out using the MTT-test. Objects of study of antibacterial activity were three strains of microorganisms: Staphylococcus aureus ATCC25923, Escherichia coli dH5α, Pseudomonas aeruginosa ATCC9027. For the investigation of cytotoxic action, cells of HEK 293 line obtained from human kidney embryos were used. Nanocomposites of metronidazole and levofloxacin were tested at concentrations known as the minimum toxic dose of antibiotics and at concentrations reduced/increased in 2 times. Immobilization of silver nanoparticles on the surface of metronidazole and levofloxacin by electron-beam technology gives a different effect on their antibacterial and cytotoxic activity. Nanocomposites of metronidazole exhibit a weaker antibacterial effect on E. coli than metronidazole alone, while levofloxacin nanocomposites have higher antibacterial activity compared to levofloxacin alone. Nanocomposites of the levofloxacin, compared to free levofloxacin, are characterized by a higher antibacterial effect towards gram-negative bacteria (E. coli), but practically do not differ in activity toward P. aeruginosa and S. aureus. Immobilization of silver nanoparticles on metronidazole crystals does not affect on its cytotoxicity relative to pseudonormal human cells line HEK 293, while the nanocomposites of levofloxacin with silver are more toxic to these cells than levofloxacin alone.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Qing-Tao Meng ◽  
Xian-Yu Liu ◽  
Xue-Ting Liu ◽  
Juan Liu ◽  
Admire Munanairi ◽  
...  

Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCb-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4418
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Se Guen Lee ◽  
Sung Jun Lee ◽  
Sang Won Jeong ◽  
...  

Reactive oxygen species (ROS)-responsive nanocarriers have received considerable research attention as putative cancer treatments because their tumor cell targets have high ROS levels. Here, we synthesized a miktoarm amphiphile of dithioketal-linked ditocopheryl polyethylene glycol (DTTP) by introducing ROS-cleavable thioketal groups as linkers between the hydrophilic and hydrophobic moieties. We used the product as a carrier for the controlled release of doxorubicin (DOX). DTTP has a critical micelle concentration (CMC) as low as 1.55 μg/mL (4.18 × 10−4 mM), encapsulation efficiency as high as 43.6 ± 0.23% and 14.6 nm particle size. The DTTP micelles were very responsive to ROS and released their DOX loads in a controlled manner. The tocopheryl derivates linked to DTTP generated ROS and added to the intracellular ROS in MCF-7 cancer cells but not in HEK-293 normal cells. In vitro cytotoxicity assays demonstrated that DOX-encapsulated DTTP micelles displayed strong antitumor activity but only slightly increased apoptosis in normal cells. This ROS-triggered, self-accelerating drug release device has high therapeutic efficacy and could be a practical new strategy for the clinical application of ROS-responsive drug delivery systems.


Export Citation Format

Share Document