Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

dynamics models
Recently Published Documents


TOTAL DOCUMENTS

1025
(FIVE YEARS 172)

H-INDEX

42
(FIVE YEARS 3)

2022 ◽  
Vol 147 ◽  
pp. 105586
Author(s):  
Marion Gödel ◽  
Nikolai Bode ◽  
Gerta Köster ◽  
Hans-Joachim Bungartz

2022 ◽  
Author(s):  
Thomas Hudson ◽  
Sofia-Katerina Kufner ◽  
Alex Brisbourne ◽  
Michael Kendall ◽  
Andrew Smith ◽  
...  

Abstract The slip of glaciers over the underlying bed is the dominant mechanism governing the migration of ice from land into the oceans, contributing to sea-level rise. Yet glacier slip remains poorly understood or constrained by observations. Here we observe both frictional shear-stress and slip at the bed of an ice stream, using 100,000 repetitive stick-slip icequakes from Rutford Ice Stream, Antarctica. Basal shear-stresses and slip-rates vary from 10^4 to 10^7 Pa and 0.2 to 1.5 m day^(-1), respectively. Friction and slip vary temporally over the order of hours and spatially over 10s of meters, caused by corresponding variations in ice-bed interface material and effective-normal-stress. Our findings also suggest that the bed is substantially more complex than currently assumed in ice stream models and that basal effective-normal-stresses may be significantly higher than previously thought. The observations also provide previously unresolved constraint of the basal boundary conditions of ice dynamics models. This is critical for constraining the primary contribution of ice mass loss in Antarctica, and hence the endeavour to reduce uncertainty in sea-level rise projections.


2022 ◽  
Author(s):  
Jim Yoon ◽  
Patricia Romero-Lankao ◽  
Yi-Chen Ethan Yang ◽  
Christian Joachim Anton Klassert ◽  
Nathan M Urban ◽  
...  
Keyword(s):  

Author(s):  
Alik Ismail-Zadeh ◽  
Alexander Soloviev

AbstractDynamics of lithospheric plates resulting in localisation of tectonic stresses and their release in large earthquakes provides important information for seismic hazard assessments. Numerical modelling of the dynamics and earthquake simulations have been changing our view about occurrences of large earthquakes in a system of major regional faults and about the recurrence time of the earthquakes. Here, we overview quantitative models of tectonic stress generation and stress transfer, models of dynamic systems reproducing basic features of seismicity, and fault dynamics models. Then, we review the thirty-year efforts in the modelling of lithospheric block-and-fault dynamics, which allowed us to better understand how the blocks react to the plate motion, how stresses are localised and released in earthquakes, how rheological properties of fault zones exert influence on the earthquake dynamics, where large seismic events occur, and what is the recurrence time of these events. A few key factors influencing the earthquake sequences, clustering, and magnitude are identified including lithospheric plate driving forces, the geometry of fault zones, and their physical properties. We illustrate the effects of the key factors by analysing the block-and-fault dynamics models applied to several earthquake-prone regions, such as Carpathians, Caucasus, Tibet-Himalaya, and the Sunda arc, as well as to the global tectonic plate dynamics.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ying Wang ◽  
Bo Hu ◽  
Yuxue Zhao ◽  
Guofang Kuang ◽  
Yaling Zhao ◽  
...  

2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
Gen Li ◽  
Hao Liu ◽  
Ulrike K. Müller ◽  
Cees J. Voesenek ◽  
Johan L. van Leeuwen

Energetic expenditure is an important factor in animal locomotion. Here we test the hypothesis that fishes control tail-beat kinematics to optimize energetic expenditure during undulatory swimming. We focus on two energetic indices used in swimming hydrodynamics, cost of transport and Froude efficiency. To rule out one index in favour of another, we use computational-fluid dynamics models to compare experimentally observed fish kinematics with predicted performance landscapes and identify energy-optimized kinematics for a carangiform swimmer, an anguilliform swimmer and larval fishes. By locating the areas in the predicted performance landscapes that are occupied by actual fishes, we found that fishes use combinations of tail-beat frequency and amplitude that minimize cost of transport. This energy-optimizing strategy also explains why fishes increase frequency rather than amplitude to swim faster, and why fishes swim within a narrow range of Strouhal numbers. By quantifying how undulatory-wave kinematics affect thrust, drag, and power, we explain why amplitude and frequency are not equivalent in speed control, and why Froude efficiency is not a reliable energetic indicator. These insights may inspire future research in aquatic organisms and bioinspired robotics using undulatory propulsion.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0246916
Author(s):  
Sean M. Kinahan ◽  
David B. Silcott ◽  
Blake E. Silcott ◽  
Ryan M. Silcott ◽  
Peter J. Silcott ◽  
...  

The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 μm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 μm tracer aerosol collection techniques agreed with fluorescent methodologies.


Export Citation Format

Share Document