Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

plasma polymerization
Recently Published Documents


TOTAL DOCUMENTS

1155
(FIVE YEARS 69)

H-INDEX

56
(FIVE YEARS 2)

2022 ◽  
Vol 23 ◽  
pp. 100646
Author(s):  
J. Carneiro de Oliveira ◽  
M. de Meireles Brioude ◽  
A. Airoudj ◽  
F. Bally-Le Gall ◽  
V. Roucoules

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 366
Author(s):  
Hee-Yeon Kim ◽  
Byung-Hoon Kim ◽  
Myung-Sun Kim

This study aims to investigate the surface characterization and pre-osteoblast biological behaviors on the three-dimensional (3D) poly(ε-caprolactone)/β-tricalcium phosphate (β-TCP) scaffold modified by amine plasma-polymerization. The 3D PCL scaffolds were fabricated using fused deposition modeling (FDM) 3D printing. To improve the pre-osteoblast bioactivity, the 3D PCL scaffold was modified by adding β-TCP nanoparticles, and then scaffold surfaces were modified by amine plasma-polymerization using monomer allylamine (AA) and 1,2-diaminocyclohexane (DACH). After the plasma-polymerization of PCL/β-TCP, surface characterizations such as contact angle, AFM, XRD, and FTIR were evaluated. In addition, mechanical strength was measured by UTM. The pre-osteoblast bioactivities were evaluated by focal adhesion and cell proliferation. Osteogenic differentiation was investigated by ALP activity, Alizarin red staining, and Western blot. Plasma-polymerization induced the increase in hydrophilicity of the surface of the 3D PCL/β-TCP scaffold due to the deposition of amine polymeric thin film on the scaffold surface. Focal adhesion and proliferation of pre-osteoblast improved, and osteogenic differentiation was increased. These results indicated that 3D PCL/β-TCP scaffolds treated with DACH plasma-polymerization showed the highest bioactivity compared to the other samples. We suggest that 3D PCL/β-TCP scaffolds treated with DACH and AA plasma-polymerization can be used as a promising candidate for osteoblast differentiation of pre-osteoblast.


2022 ◽  
pp. 152350
Author(s):  
Elisa Sainz-García ◽  
María López ◽  
Rodolfo Múgica-Vidal ◽  
Beatriz Rojo–Bezares ◽  
Carmen Lozano ◽  
...  

BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 829-836
Author(s):  
MAR虯 G. FLORES-S罭CHEZ ◽  
ROBERTO OLAYO ◽  
J. MORALES-CORONA ◽  
ATL罭TIDA M. RAYA-RIVERA ◽  
DIEGO R. ESQUILIANO-REND覰

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Jae Young Kim ◽  
Hyo Jun Jang ◽  
Gyu Tae Bae ◽  
Choon-Sang Park ◽  
Eun Young Jung ◽  
...  

In atmospheric pressure (AP) plasma polymerization, increasing the effective volume of the plasma medium by expanding the plasma-generating region within the plasma reactor is considered a simple method to create regular and uniform polymer films. Here, we propose a newly designed AP plasma reactor with a cruciform wire electrode that can expand the discharge volume. Based on the plasma vessel configuration, which consists of a wide tube and a substrate stand, two tungsten wires crossed at 90 degrees are used as a common powered electrode in consideration of two-dimensional spatial expansion. In the wire electrode, which is partially covered by a glass capillary, discharge occurs at the boundary where the capillary terminates, so that the discharge region is divided into fourths along the cruciform electrode and the discharge volume can successfully expand. It is confirmed that although a discharge imbalance in the four regions of the AP plasma reactor can adversely affect the uniformity of the polymerized, nanostructured polymer film, rotating the substrate using a turntable can significantly improve the film uniformity. With this AP plasma reactor, nanostructured polythiophene (PTh) films are synthesized and the morphology and chemical properties of the PTh nanostructure, as well as the PTh-film uniformity and electrical properties, are investigated in detail.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1336
Author(s):  
Laura Barillas ◽  
Ekaterina Makhneva ◽  
Sehoon An ◽  
Katja Fricke

For the creation of thin films, the use of precursors in liquid phase offers a viable alternative when these chemicals are sensitive to high temperatures and phase changes. However, it requires appropriate liquid handling and deposition technologies capable of dispensing the fluid homogeneously to produce a uniform thin film. We report different tailor-made mist chamber designs integrated in an atmospheric-pressure plasma polymerization process for the synthesis of functional thin polymer films from liquid precursors. A systematic investigation, evaluated by performance indicators, is presented on the characteristics and suitability of metallic 3D-printed mist chambers depending on inner volume, geometry and surface post-treatment, for the deposition of a thin liquid monomer film. To assess the quality of the subsequently obtained plasma-polymerized (pp) films, their properties were characterized in terms of thickness, chemical composition, surface morphology and stability in aqueous environment. It was found that the specification of the mist chambers along with the plasma process parameters influences the pp film’s thickness, surface morphology and degree of monomer conversion. This study is one of the first demonstrations of a controllable process able to tune the cross-linked polymeric chains of plasma-polymers at atmospheric pressure, highlighting the opportunities of using mist chambers and plasma technology to discover tailored organic thin films to materials sciences and life sciences.


2021 ◽  
Author(s):  
DANIEL J. EYCKENS ◽  
LACHLAN SOULSBY ◽  
FILIP STOJCEVSKI ◽  
ATHULYA WICKRAMASINGHA ◽  
LUKE C. HENDERSON

This work demonstrates the efficacy in performing an electrochemical pretreatment on carbon fibres to improve the effect of plasma polymerization of acrylic acid on these surfaces. Modified samples demonstrated improve physical properties including tensile strength and Young’s modulus, as well as an increase in composite performance as measured by the interfacial shear strength. The electrochemical pretreatment was shown to enhance the advantages observed when coating fibres using plasma polymerization.


2021 ◽  
Author(s):  
MATTEO LILLI ◽  
MILAN ZVONEK ◽  
VLADIMIR CECH ◽  
CHRISTINA SCHEFFLER ◽  
JACOPO TIRILLÒ ◽  
...  

Basalt fibres are becoming a promising alternative to synthetic fibres as a green reinforcement phase in polymeric matrix composites, showing excellent mechanical, chemical and thermal properties. In this work we synthetized tetravinylsilane (TVS) or a mixture formed by tetravinylsilane and different percentages of oxygen on the surface of unsized basalt fibres through the Plasma-Enhanced Chemical Vapor Deposition (PECVD) technique for improving the fibre/matrix adhesion. Single fibre tensile test proved the effectiveness of the process, without any degradation of the mechanical properties of modified basalt fibres. Finally, through pull out tests, the interfacial properties of basalt fibres were studied, measuring increases up to 80% of the IFSS for modified fibres compared to neat fibres. This result is the consequence of a greater chemical compatibility between the fibres and the matrix, thanks to the presence of a higher number of Si-O-C groups, and of a mechanical interlocking effect promoted by the increased surface roughness of the plasma-modified fibres.


Export Citation Format

Share Document