Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

impact test
Recently Published Documents


TOTAL DOCUMENTS

1671
(FIVE YEARS 211)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 1217 (1) ◽  
pp. 012004
Author(s):  
W H Choong ◽  
H H Hamidi ◽  
K B Yeo

Abstract This study is focused on exploring intrinsic self-healing polymer material development, where the inclusion of thermoplastic additives into thermoset polymer material as healing agents. Intrinsic self-healing thermoset-thermoplastic development is involving the material formulation of thermoset liquid resin (Poly Bisphenol A-co-epichlorohydrin) and thermoplastic (polycaprolactone). The material formulation ratio is up to 30% polycaprolactone with respect to thermoset weight. The mixture is heated and stirred to saturate at 80°C before the hardener is added. The mixture is cured and further finishing as Charpy impact test specimen. The specimen is fractured and absorbed impact energy property characterised through the Charpy impact test. The heat treatment is then performed to trigger the self-healing reaction in the polymer. The self-healing efficiency of the thermoset thermoplastic is investigated based on the absorbed impact energy before and after the heat treatment. The 20% or higher thermoplastic concentration in the polymer caused the polymer to possess high self-healing efficiency and faster healing time as compared to the low thermoplastic concentration polymer. However, the high concentration polymer has a disadvantage on the overall structural strength instead. On the contrary, 10% to 15% thermoplastic composition will result in lower and slower self-healing performance but higher initial structural strength.


2021 ◽  
Vol 14 (2) ◽  
pp. 134-139
Author(s):  
Iwan Nugraha Gusniar ◽  
Ahmad Juhri ◽  
Viktor Noubnome

The purpose of this study was to determine the difference in the value of tensile strength, impact and microstructure test results on ST 37 steel plates due to variations in current strength of 80 A, 85 A and 90 A and 1G, 2G and 3G welding positions. The results of this study show the value of Max.load, current strength of 80 A 3G welding position gets the highest value of 5650 kgf, value of Tinsile strength, current strength of 80 A 3G welding position gets the highest value of 44.78 (kgf/mm2), then the strain value, the current strength of 80 A for the 3G welding position gets the highest value of 0.9% and the value of the modulus of elasticity, the current strength of 80 A for the 3G welding position gets the highest value of 97.94 (GPa,KN/mm2), In the value of the impact test results, the current strength of 80 A is the 1G welding position that gets the highest value, which is 116 Joules. In the observation of microstructure testing, 3 points were carried out, Weld metal, HAZ and Base metal at each strong current


Fibers ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 88
Author(s):  
Gunasekaran Murali ◽  
Nandhu Prasad ◽  
Sergey Klyuev ◽  
Roman Fediuk ◽  
Sallal R. Abid ◽  
...  

The impact resistance of functionally layered two-stage fibrous concrete (FLTSFC) prepared using the cement grout injection technique was examined in this study. The impact resistance of turtle shells served as the inspiration for the development of FLTSFC. Steel and polypropylene fibres are used in more significant quantities than usual in the outer layers of FLTSFC, resulting in significantly improved impact resistance. An experiment was carried out simultaneously to assess the efficacy of one-layered and two-layered concrete to assess the effectiveness of three-layered FLTSFC. When performing the drop-mass test ACI 544, a modified version of the impact test was suggested to reduce the scattered results. Instead of a solid cylindrical specimen with no notch, a line-notched specimen was used instead. This improvement allows for the pre-definition of a fracture route and the reduction of the scattering of results. The testing criteria used in the experiments were impact numbers associated to first crack and failure, mode of failure, and ductility index. The coefficient of variation of the ACI impact test was lowered due to the proposed change, indicating that the scattering of results was substantially reduced. This research contributes to the idea of developing enhanced, more impact-resistant fibre composites for use in possible protective structures in the future.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 35
Author(s):  
Garth Raditya ◽  
Erwin Siahaan ◽  
Abrar Riza

Engine mounting is one of the car component which is has optimize function to obtain thesystem in the car is extremely perfect. The engine mounting has to be have behavior ductile by strongestenough to support the car engine whether in rest and moving position. To obtain car engine mountingwhich has these function it has to be treated by treatment. The method was used by using Heat TreatmentSystem which we were Hardening and Tempering. Heat treatment of engine mounting is needed toanalyze the microstructure and mechanical properties of low carbon steel used. Tests carried out attemperatures of 800oC, 850oC, 900oC and normal conditions without heat treatment. Then continued withimpact charpy testing, vickers hardness testing, microstructure observation using microscope and SEM.The tests are carried out in accordance with ASTM E23, ASTM E92, ASTM A370 standards. The Vickerstest results provide the lowest HV value of 118.7Hv at 900oC, while the normal condition is at 137.409Hv.The charpy impact test results give the lowest value of 0.06 j / mm2 under normal conditions, while at900oC at 0.0962 j / mm2. The results with microscopy and SEM, the greater the temperature given to heattreatment, the less pearlite will be, while the amount of ferrite and austenite increases which makes theengine mounting more toughness.


2021 ◽  
pp. 002199832110587
Author(s):  
Sultan M Bayazeid ◽  
Kim-Leng Poon ◽  
Balakrishnan Subeshan ◽  
Mohammed Alamir ◽  
Eylem Asmatulu

Carbon fiber–reinforced composites (CFRCs) have been used extensively in structural applications within the aerospace and automotive manufacturing industries. However, several other applications have been recognized. These take advantage of the additional properties of CFRCs, which lead to providing better performance for structures. However, in their service environment, these CFRCs are inevitably susceptible to impact damage from multiple sources, and they must be able to recover from impacts to meet structural requirements. This study directs an experimental investigation of using induction heating (IH) for an impact-damaged CFRC. Here, IH process parameters, including the effects of electromagnetic frequency and generator power on the recovery of impact-damaged CFRC, have been analyzed. The anisotropic conductivity characteristics and the relationship between the drop-weight impact depth and conductivity of CFRC garnered much attention. This paper also offers the electromagnetic properties of CFRC for various applications. In this study, CFRC cured samples were obtained from Cetex® TC1200 PEEK, AS4 145 gsm, 16 unidirectional plies. Three variants of CFRC samples were tested: undamaged samples; samples with impact damage introduced in the center by a drop-weight impact test, according to the ASTM D7136/7136M standard; and samples with drop-weight impact damage recovered using the IH system. This work presents the results of the tensile strength of CFRC samples to assess the comparison of undamaged samples, samples damaged after the drop-weight impact test, and samples recovered after the drop-weight impact test. IH is appropriate for the recovery of impact-damaged CFRC samples, aiding in the conversion of electromagnetic energy to heat in order to generate mechanisms on components to recover the impact-damaged CFRC samples. Experimental results show that the impact-damaged area of the recovered CFRC samples is 37.0% less than that of damaged CFRC samples, and tensile strength results also improved after the impact-damaged CFRC samples were recovered. These results show that the IH method can effectively improve the impact damage performance of CFRC. The outcome of this study is promising for use in many applications, especially in the aerospace and automotive industries.


2021 ◽  
pp. 152808372110519
Author(s):  
Mengqi Yang ◽  
Xiaogang Chen

Modern ballistic helmets made from textile composites offer enhanced protection with lightweight, but the discontinuity of the reinforcing materials is a potential problem affecting the helmet performance. This work uses 3D angle-interlock fabrics to provide reinforcement continuity, and evaluates 3D through-the-thickness angle-interlock (TTAI) fabrics to study the influence of fabric structural parameters on fabric mouldabilty and ballistic performance for ballistic helmet application. The mouldability was measured through experiments and modelled numerically, and the ballistic impact test was carried out to identify the optimal fabric structures for constructing ballistic helmet shells. The results show that increase in weft density of the TTAI fabrics causes decrease in the mouldability of the TTAI fabrics, and that the addition of wadding yarns into the TTAI fabrics has little influence on fabric mouldability compared to the conventional TTAI fabrics with the same weft density. However, the involvement of wadded TTAI fabrics demonstrates a 34% increase in ballistic energy absorption and 3% higher estimated ballistic limit over the conventional counterpart. Taking both mouldability and ballistic protection into account, the wadded TTAI fabric structure is an effective continuous reinforcement for ballistic helmet shells, offering required mouldability and improved ballistic performance.


Author(s):  
Zhongqiang Zhou ◽  
Hu Hui ◽  
Qingfeng Cui ◽  
Song Huang ◽  
Yalin Zhang

In order to prevent the brittle fracture accident, minimum design metal temperature of ferrite steel should be limited. After the minimum design metal temperature curve in American Society of Mechanical Engineers VIII-2 (2007) was proposed, much related research has been done in recent years. In this paper, firstly the theoretical basis of four methods used to determine the minimum design metal temperature was introduced. Secondly, the mechanical properties of Q345R was measured by tensile test, Charpy v-notch impact test and fracture toughness test Thirdly, minimum design metal temperature curve of Q345R that determined by four methods were obtained. There are obvious difference between the curves of Q345R that determined by four methods. It can be concluded that low temperature fracture toughness of Q345R is underestimated when classifying Q345R into exemption curve A in American Society of Mechanical Engineers VIII-2 (2007).


2021 ◽  
Vol 11 (2) ◽  
pp. 93-100
Author(s):  
Jayanta Kumar Das ◽  
Saikat Deb ◽  
Biswadeep Bharali

Abstract Crushing test and Impact test are very important to estimate strength and toughness characteristics of the road aggregate. Extensive experimental procedures and different sets of equipment are required for these types of aggregate testing. Therefore, the objective of the study is to investigate whether the light compaction test can be a suitable alternative for both these tests. For this experimental procedure, 60 aggregate samples were collected from different rock quarries spread along North-eastern states of India. The specifications of the aggregate samples are kept similar for all of these three test procedures. The result indicates a strong correlation of Light compaction values (LCV) with Aggregate crushing values (ACV) and Aggregate Impact Values (AIV). The R2 values for the relationship was found to be more than 0.9 for both these relationships. It indicates that the LCV can be used to closely predict the ACV and AIV. The root mean square error (RMSE) values estimated based on the actual and predicted values were also found to be low which further concrete the claim that light compaction test can be a suitable alternative for crushing test and impact test of the aggregates.


Export Citation Format

Share Document