Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

compression fractures
Recently Published Documents


TOTAL DOCUMENTS

1672
(FIVE YEARS 320)

H-INDEX

71
(FIVE YEARS 2)

2022 ◽  
Vol 33 (1) ◽  
pp. 14-18
Author(s):  
François H. Cornelis ◽  
Leo Razakamanantsoa ◽  
Mohamed Ben Ammar ◽  
Milan Najdawi ◽  
Francois Gardavaud ◽  
...  

Author(s):  
A Yeon Kim ◽  
Min A Yoon ◽  
Su Jung Ham ◽  
Young Chul Cho ◽  
Yousun Ko ◽  
...  

2021 ◽  
pp. 155335062110624
Author(s):  
Jing Yang ◽  
Penghui Ni ◽  
Lina Zhang ◽  
Zhanxin Lu ◽  
Dapeng Liu ◽  
...  

Background This study aimed to evaluate a personalized 3D-printed percutaneous vertebroplasty positioning module and navigation template based on preoperative CT scan data that was designed to treat patients with vertebral compression fractures caused by osteoporosis. Methods A total of 22 patients with vertebral compression fractures admitted to our hospital were included in the study. Positioning was performed with the new 3D-printed positioning module, and the navigation template was used for patients in the experimental group, and the traditional perspective method was used for patients in the control group. The experimental group consisted of 11 patients, 2 males and 9 females, with a mean age of 67.27 ± 11.86 years (range: 48 to 80 years), and the control group consisted of 11 patients, 3 males and 8 females, with a mean age of 74.27 ± 7.24 years (range: 63 to 89 years). The puncture positioning duration, number of intraoperative fluoroscopy sessions, and preoperative and postoperative visual analog scale (VAS) scores were statistically analyzed in both groups. Results The experimental group had shorter puncture positioning durations and fewer intraoperative fluoroscopy sessions than the control group, and the differences were statistically significant (P < .05). There were no significant differences in age or preoperative or postoperative VAS scores between the two groups (P > .05). Conclusions The new 3D-printed vertebroplasty positioning module and navigation template shortened the operation time and reduced the number of intraoperative fluoroscopy sessions. It also reduced the difficulty in performing percutaneous vertebroplasty and influenced the learning curve of senior doctors learning this operation to a certain degree.


2021 ◽  
Vol 8 ◽  
Author(s):  
Younghun Lee ◽  
Ho-Jae Lee ◽  
Siyeong Yoon ◽  
Jaeyeon Shin ◽  
Kyung-Chae Park ◽  
...  

Background: This study aimed to determine whether the prevalence of acute vertebral osteoporotic compression fractures (VOCF) in the elderly population is related to the distribution of muscles and fat in the human body.Methods: Data of acute VOCF and non-VOCF patients presenting at our institution between January 2018 and May 2020 were analyzed. Patients aged 65 years and older, who underwent body composition test and dual-energy X-ray absorptiometry at the same time were enrolled. After applying exclusion criteria, patients were divided into four groups: normal, sarcopenia without obesity, obesity without sarcopenia, and sarcopenic obesity. Body mass index ≥25 kg/m2 was considered obesity, and sarcopenia was defined as skeletal muscle index lower than 7.0 kg/m2 in males and 5.4 kg/m2 in females. The VOCF rate was analyzed between the groups.Discussion: A total of 461 patients were included, of whom 103 were males. Among them, 163 (35.36%) had normal body composition, 151 (32.75%) had sarcopenia without obesity, 110 (23.86%) had obesity without sarcopenia, and 37 (8.03%) had sarcopenic obesity. The sarcopenic obesity group had the highest rate of acute VOCF (37.8%), which was statistically significant. Specifically, females with sarcopenic obesity and sarcopenia without obesity had significantly higher acute VOCF rates compared to those with normal body compositions. Multivariate analysis showed that sarcopenic obesity was significantly associated with acute VOCF rate overall, as well as in females.Conclusion: Sarcopenic obesity is strongly associated with acute VOCF, especially in females, and it could be an essential criterion for the prevention of acute VOCF.


2021 ◽  
Vol 49 (12) ◽  
pp. 030006052110663
Author(s):  
Kai Xu ◽  
Ya-Ling Li ◽  
Song-Hua Xiao

Objective This study was performed to compare the effectiveness and safety of vesselplasty versus vertebroplasty in the treatment of osteoporotic compression fractures with posterior wall rupture. Methods Patients who underwent treatment of a single osteoporotic vertebral compression fracture with posterior wall rupture from January 2016 to February 2020 were retrospectively reviewed. They were divided into a vesselplasty group (n = 17) and a vertebroplasty group (n = 43). Pain relief, radiographic outcomes, and bone cement leakage were compared between the two groups. Results There were no significant differences in the operation time, postoperative pain relief, vertebral compression recovery, or local Cobb angle improvement between the two groups. However, the overall bone cement leakage rate (29.4% vs. 67.4%) and spinal canal leakage rate (0.0% vs. 30.2%) were significantly lower in the vesselplasty group than vertebroplasty group. Conclusions Vesselplasty offers similar pain relief and vertebral compression recovery but lower spinal canal leakage compared with vertebroplasty. Vesselplasty is thus a better option than vertebroplasty for patients with osteoporotic compression fractures with posterior wall rupture.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhirong Zheng ◽  
Chao Liu ◽  
Zhen Zhang ◽  
Wenhao Hu ◽  
Meng Gao ◽  
...  

Abstract Objective To investigate whether thoracolumbar flexion dysfunctions increase the risk of thoracolumbar compression fractures in postmenopausal women. Methods The records of postmenopausal women with thoracolumbar vertebral compression fractures and without vertebral compression fractures were surveyed. Demographic data, clinical data, and quantitative computed tomography (QCT) findings were compared between the groups. Chi-squared tests, unpaired t-tests, Spearman, and Mann–Whitney U were used to assess the group characteristics and proportions. The relationship between the risk of fracture and the difference of Cobb’s angle of thoracolumbar segment (DCTL) was evaluated by logistic regression. DCTL was calculated by subtracting thoracolumbar Cobb’s angles (TLCobb’s) from thoracolumbar hyperflexion Cobb’s angles (TLHCobb’s). Quantitative computed tomography (QCT) values and spinal osteoarthritis (OA) of postmenopausal women in the two groups were compared. Results 102 of 312 were enrolled to the study group of postmenopausal women with the fracture, and 210 of 312 were enrolled to the control group of postmenopausal women without the fracture. There were significant differences in QCT values and spinal OA including disc narrowing (DSN) and osteophytes (OPH) between the two groups (p < 0.001 for all four). The risk of thoracolumbar compression fractures in the postmenopausal women with DCTL ≤ 8.7° was 9.95 times higher (95% CI 5.31–18.64) than that with > 8.7° after adjusting for age, BMI, and QCT values. Conclusion Low DCTL may be a risk factor of thoracolumbar compression fractures in postmenopausal women, and a DCTL ≤ 8.7° can be a threshold value of thoracolumbar compression fractures.


Export Citation Format

Share Document