Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

protein phosphatase
Recently Published Documents


TOTAL DOCUMENTS

5897
(FIVE YEARS 448)

H-INDEX

156
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 865
Author(s):  
Jinsoo Kim ◽  
Dohee Ahn ◽  
Sang J. Chung

Depletion of protein phosphatase-1 catalytic subunit beta (PPP1CB), a serine/threonine protein phosphatase and potent adipogenic activator, suppresses the differentiation of 3T3-L1 preadipocytes into mature adipocytes. Therefore, PPP1CB is considered as a potential therapeutic target for obesity. We screened 1033 natural products for PPP1CB inhibitors and identified chebulinic acid, which is abundantly present in the seeds of Euphoria longana and fruits of Terminalia chebula. Chebulinic acid strongly inhibited the hydrolysis of 6,8-difluoro-4-methylumbelliferyl phosphate by PPP1CB (IC50 = 300 nM) and demonstrated potent antiadipogenic effects in 3T3-L1 preadipocytes in a concentration-dependent manner. Additional studies have demonstrated that chebulinic acid suppresses early differentiation by downregulating key transcription factors that control adipogenesis in 3T3-L1 cells. These results suggested that chebulinic acid may be a potential therapeutic agent for treating obesity by inhibiting PPP1CB activity.


Author(s):  
Junya Hasegawa ◽  
Emi Tokuda ◽  
Yao Yao ◽  
Takehiko Sasaki ◽  
Ken Inoki ◽  
...  

Transcriptional factor EB (TFEB) is a master regulator of genes required for autophagy and lysosomal function. The nuclear localization of TFEB is blocked by the mechanistic target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of TFEB at multiple sites including Ser-211. Here we show that inhibition of PIKfyve, which produces phosphatidylinositol 3,5-bisphosphate on endosomes and lysosomes, causes a loss of Ser-211 phosphorylation and concomitant nuclear localization of TFEB. We found that while mTORC1 activity toward S6K1, as well as other major mTORC1 substrates, is not impaired, PIKfyve inhibition specifically impedes the interaction of TFEB with mTORC1. This suggests that mTORC1 activity on TFEB is selectively inhibited due to loss of mTORC1 access to TFEB. In addition, we found that TFEB activation during inhibition of PIKfyve relies on the ability of protein phosphatase 2A (PP2A) but not calcineurin/PPP3, to dephosphorylate TFEB Ser-211. Thus, when PIKfyve is inhibited, PP2A is dominant over mTORC1 for control of TFEB phosphorylation at Ser-S211. Together these findings suggest that mTORC1 and PP2A have opposing roles on TFEB via phosphorylation and dephosphorylation of Ser-211, respectively, and further, that PIKfyve inhibits TFEB activity by facilitating mTORC1-dependent phosphorylation of TFEB.


Author(s):  
Sijia Yin ◽  
Chao Han ◽  
Yun Xia ◽  
Fang Wan ◽  
Junjie Hu ◽  
...  

AbstractParkinson’s disease (PD) is an incurable neurodegenerative disease characterized by aggregation of pathological alpha-synuclein (α-syn) and loss of dopaminergic neuron in the substantia nigra. Inhibition of phosphorylation of the α-syn has been shown to mediate alleviation of PD-related pathology. Protein phosphatase 2A (PP2A), an important serine/threonine phosphatase, plays an essential role in catalyzing dephosphorylation of the α-syn. Here, we identified and validated cancerous inhibitor of PP2A (CIP2A), as a potential diagnostic biomarker for PD. Our data showed that plasma CIP2A concentrations in PD patients were significantly lower compared to age- and sex-matched controls, 1.721 (1.435–2.428) ng/ml vs 3.051(2.36–5.475) ng/ml, p < 0.0001. The area under the curve of the plasma CIP2A in distinguishing PD from the age- and sex-matched controls was 0.776. In addition, we evaluated the role of CIP2A in PD-related pathogenesis in PD cellular and MPTP-induced mouse model. The results demonstrated that CIP2A is upregulated in PD cellular and MPTP-induced mouse models. Besides, suppression of the CIP2A expression alleviates rotenone induced aggregation of the α-syn as well as phosphorylation of the α-syn in SH-SY5Y cells, which is associated with increased PP2A activity. Taken together, our data demonstrated that CIP2A plays an essential role in the mechanisms related to PD development and might be a novel PD biomarker.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mohd Moin Khan ◽  
Ubaid Ullah Kalim ◽  
Meraj H. Khan ◽  
Riitta Lahesmaa

Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. However, emerging evidence suggests PP2A constrains inflammatory responses and is important in autoimmune and neuroinflammatory diseases. Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and autoimmunity. We have also discussed the modulation of PP2A activity by endogenous inhibitors and its small-molecule activators as potential therapeutic approaches against autoimmunity.


2021 ◽  
Author(s):  
Juliana Felgueiras ◽  
Luís Sousa ◽  
Ana Luísa Luísa Teixeira ◽  
Bárbara Regadas ◽  
Luís Korrodi-Gregório ◽  
...  

Abstract Protein phosphatase 1 (PP1) regulates several cellular events via interaction with multiple regulatory subunits. The human prostate proteome includes various PP1-interacting proteins; however, a very limited number of interactions is yet characterized and their role in prostate tumorigenesis remains poorly understood. Tctex1 domain-containing protein 4 (TCTEX1D4) was previously identified as a PP1-interacting protein, but its function, as well as the relevance of its interaction with PP1, are virtually unknown. In this study we addressed the role of the PP1/TCTEX1D4 complex in prostate tumorigenesis. We found distinct expression levels and subcellular distributions for TCTEX1D4 and PP1γ in human prostate epithelial normal-like and malignant cells. Moreover, we showed that TCTEX1D4 participates in the regulation of cell proliferation and modulation of microRNAs expression and that its interaction with PP1 controls its function. Taken together, our study provides first evidence for the involvement of the PP1/TCTEX1D4 complex in prostate tumorigenesis.


2021 ◽  
pp. molcanres.MCR-21-0581-E.2021
Author(s):  
Jiang-Dong Sui ◽  
Zheng Tang ◽  
Benjamin P.C. Chen ◽  
Ping Huang ◽  
Meng-Qi Yang ◽  
...  

2021 ◽  
Vol 119 (1) ◽  
pp. e2110877119
Author(s):  
Yong Zhang ◽  
Jiaqi Fu ◽  
Shuxin Liu ◽  
Lidong Wang ◽  
Jiazhang Qiu ◽  
...  

Coxiella burnetii is a bacterial pathogen that replicates within host cells by establishing a membrane-bound niche called the Coxiella-containing vacuole. Biogenesis of this compartment requires effectors of its Dot/Icm type IV secretion system. A large cohort of such effectors has been identified, but the function of most of them remain elusive. Here, by a cell-based functional screening, we identified the effector Cbu0513 (designated as CinF) as an inhibitor of NF-κB signaling. CinF is highly similar to a fructose-1,6-bisphosphate (FBP) aldolase/phosphatase present in diverse bacteria. Further study reveals that unlike its ortholog from Sulfolobus tokodaii, CinF does not exhibit FBP phosphatase activity. Instead, it functions as a protein phosphatase that specifically dephosphorylates and stabilizes IκBα. The IκBα phosphatase activity is essential for the role of CinF in C. burnetii virulence. Our results establish that C. burnetii utilizes a protein adapted from sugar metabolism to subvert host immunity.


2021 ◽  
Vol 14 ◽  
Author(s):  
Meng-Ting Zuo ◽  
Si-Juan Huang ◽  
Yong Wu ◽  
Mo-Huan Tang ◽  
Hui Yu ◽  
...  

Background: Gelsemium elegans (G. elegans) has been shown to have strong pharmacological and pharmacodynamic effects in relevant studies both in China and USA. G. elegans has been used as a traditional medicine to treat a variety of diseases and even has the potential to be an alternative to laboratory synthesized drugs. However, its toxicity severely limited its application and development. At present, there is little attention paid to protein changes in toxicity. Aim: This study investigated the toxicity effects after long-term exposure of G. elegans of the rat brain through proteomic. Method: 11 differential abundance proteins were detected, among which 8 proteins were higher in the G. elegans- exposure group than in the control group, including Ig-like domain-containing protein (N/A), receptor-type tyrosine-protein phosphatase C (Ptprc), disheveled segment polarity protein 3 (Dvl3), trafficking protein particle complex 12 (Trappc12), seizure-related 6 homolog-like (Sez6l), transmembrane 9 superfamily member 4 (Tm9sf4), DENN domain-containing protein 5A (Dennd5a) and Tle4, whereas the other 3 proteins do the opposite including Golgi to ER traffic protein 4 (Get4), vacuolar protein sorting 4 homolog B (Vps4b) and cadherin-related 23 (CDH23). Furthermore, we performed validation of WB analysis on the key protein CDH23. Result: Finally, only fewer proteins and related metabolic pathways were affected, indicating that there was no accumulative toxicity of G. elegans. G. elegans has the potential to develop and utilize of its pharmacological activity. CHD23, however, is a protein associated with hearing. Conclusion: Whether the hearing impairment is a sequela after G. elegans exposure remains to be further studied.


Export Citation Format

Share Document