Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

nonlinear internal waves
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 23)

H-INDEX

32
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Jianjun Liang ◽  
Xiao-Ming Li ◽  
Kaiguo Fan

The distribution and source sites of nonlinear internal waves (NLIWs) northeast of Hainan Island were investigated using satellite observations and a wavefront propagation model. Satellite observations show two types of NLIWs (here referred to as type-S and type-D waves). The type-S waves are spaced at a semidiurnal tidal period and the type-D waves are spaced at a diurnal tidal period. The spatial distribution of the two types of NLIWs displays a sandwich structure in which the middle region is influenced by both types of NLIWs, and the northern and southern regions are governed by the type-S and type-D waves, respectively. Solving the wavefront model yields good agreement between simulated and observed wavefronts from the Luzon Strait to Hainan Island. We conclude that the NLIWs originate from the Luzon Strait.


2022 ◽  
pp. 104644
Author(s):  
Takahiro Endoh ◽  
Eisuke Tsutsumi ◽  
Chang-Su Hong ◽  
Gyu-Nam Baek ◽  
Ming-Huei Chang ◽  
...  

2021 ◽  
Vol 932 ◽  
Author(s):  
Amin Ghassemi ◽  
Saeid Zahedi ◽  
Leon Boegman

Abstract Breaking nonlinear internal waves (NLIWs) of depression on boundary slopes drives mixing in the coastal ocean. Of the different breaker types, fission is most commonly observed on mild slopes of continental margins. However, fission on mild slopes has rarely been investigated in the laboratory owing to limitations on flume length. In the present work, a train of NLIWs of depression is generated in an 18.2 m wave flume and shoaled upon a mild uniform slope. During fission, each NLIW of depression scatters into one or two NLIWs of elevation, which transforms into a bolus at the bolus birth point, where shear instability occurs through the pycnocline. The bolus propagates upslope, decreasing in size until it degenerates by shear and lobe-cleft instability, while losing volume to a return flow along the bed. The location of the bolus birth point, bolus propagation length scale, initial size and the number of boluses from each incident wave are parameterized from the wave half-width and the wave Froude number associated with the incident NLIW. These are compared with the characteristics of boluses generated by other breaking mechanisms on steeper slopes. Some bolus characteristics (height to length ratio, change in size and velocity field) are similar for boluses generated by fission, collapsing sinusoidal waves and internal solitary waves of elevation; however, the number of boluses, their birth point and initial height differ. The boluses formed by fission have more initial energy and no reflection. Further research is required to better quantify bolus-driven mixing on continental margins.


2021 ◽  
Vol 9 (10) ◽  
pp. 1089
Author(s):  
Seung-Woo Lee ◽  
Sung-Hyun Nam

Propagation speed and direction of nonlinear internal waves (NLIWs) are important parameters for understanding the generation and propagation of waves, and ultimately clarifying regional ocean circulation. However, these parameters cannot be directly measured from in-situ instruments, but can only be estimated from post-processing in situ data. Herein, we present two methods and an optimal approach to estimate the propagation speed and direction of waves using underway and moored observations. The Doppler shift method estimates these parameters from apparent observations concerning a moving ship using the Doppler shift induced by the changing relative distance of the NLIWs from the moving ship. The time lag method estimates the parameters using the distance between two locations of the NLIW observed at different times and the time lag. To optimize the speed and direction of NLIWs, the difference in the propagation direction independently estimated by the two methods needs to be minimized concerning the optimal propagation speed to yield the optimal propagation direction. The methods were applied to two cases observed in the northern East China Sea in May 2015 and August 2018. This study has practical significance for better estimating the propagation speed and direction of NILWs particularly over a broad continental shelf.


Export Citation Format

Share Document